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1 Overview

For my public engagement project, I created a two-part animated video se-
ries that explores Egyptian fractions and their practical applications. The first
video provides a general overview of the Ancient Egyptian numeration system,
as well as some basic calculations. The second video focuses on the extended
applications of Egyptian fractions, including additional methods and modern
problems. These videos were designed for students aged 13-18 with an interest
in mathematics, although the second video assumed a slightly higher level of
mathematical understanding, making it also suitable for A-Level or even uni-
versity level students.

In total, I received 40 responses to my videos. While it may have been
tempting to falsify data to achieve favourable results, I recognise that doing so
would compromise the accuracy of my conclusions and violate research stan-
dards. As such, I have presented my results honestly and transparently.

To gather feedback on my videos, I showed them to members of my target
audience and asked them to fill out a feedback form provided in A. I showed
my videos to four classes at a British secondary school, which will be referred
to as School X throughout this report. I also showed my video to four of my
maths tutees and received specific individual feedback. In order to keep their
responses anonymous, I have chosen to refer to them as Tutees A, E, I and O. To
protect the privacy of the participants, I collected only their age and feedback
responses, without collecting any personal identifying information.

Before presenting the videos, I informed participants of the aims of my
project and how their responses would be used to ensure ethical research prac-
tices. I also emphasised the confidentiality of their responses and their right to
withdraw their responses at any time, obtaining informed consent from all par-
ticipants. In accordance with the Information Commissioner’s Office’s guidance
on data protection for children, I prioritised the values of privacy and anonymity
when working with children.
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2 Reasoning

The motivation for choosing to investigate Egyptian fractions stems from a
personal interest in this topic, which initially appeared intriguing and unfamil-
iar. I hoped that it would also be a new and interesting topic for viewers. As
my research progressed, it became increasingly apparent that Egyptian frac-
tions are a fascinating and multifaceted area of study. The concept of unit
fraction representations is particularly intriguing as it deviates from our famil-
iar fractional numeration and presents a unique perspective on mathematical
reasoning. Moreover, the topic exhibits a remarkable range of potential appli-
cations, which are both unexpected and inspiring. Notably, I believe that the
connection between unit fraction representations and Sylvester’s sequence is es-
pecially captivating as it unearths an unanticipated relationship between two
seemingly distinct mathematical concepts. Learning about a variety of mathe-
matical topics enhances cognitive faculties, particularly problem-solving skills,
and also enriches our understanding of the fundamental concepts in mathemat-
ics.

The videos aim to demonstrate that mathematics is a language with its own
alphabet, and that numbers are the symbols used to represent values. Through
an analysis of the symbols and number systems used by Ancient Egyptians, it
becomes clear that there are multiple ways of writing mathematics, and the
conventions and symbols used are arbitrary, and developed over time. Such an
understanding of mathematical notation can lead to a more flexible and innova-
tive approach to problem-solving. Having this view of mathematics can improve
lateral thinking, leading to new ideas and ways of thinking.

Furthermore, studying the history of mathematics can help to understand
the development of mathematical concepts, and provide insight into their future
potential. Collaborating with others and exploring their ideas about mathe-
matics can offer a lot of learning opportunities, including drawing inspiration
from different cultures and societies. In particular, the examination of Egyp-
tian mathematics can contribute to the de-westernisation of mathematics and
science, promoting open-mindedness and encouraging representation of diverse
cultures and societies in STEM fields. The impact of this research is not lim-
ited to the academic realm, but can inspire the next generation of innovative
mathematicians, regardless of their background or cultural heritage.

The engagement medium chosen for this is video, as it allows for the com-
bination of visuals and audio, enhancing the accessibility and entertainment
value of the project. Initially, a formal, lecture-style video was intended; how-
ever, upon further consideration, I realised it may not be as easy to produce and
may not captivate the audience as effectively as an animated format. There-
fore, a more informal and engaging style, characterised by cute animations, was
chosen instead. This style was found to be particularly suitable for the younger
demographic of the intended audience, while also being enjoyable for other age
groups. Moreover, the videos offer a well-rounded and unique approach to this
topic in that they do all of the following:

(a) Visually demonstrate the process of working out questions.
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(b) Demonstrate active completion of example questions.

(c) Allow for viewer interaction and can be used to teach how to do Egyptian
fractions not just about them.

(d) Bring together advanced mathematical problems.

(e) Discuss further applications of Egyptian fractions.

(f) Discuss historical context.
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3 The Mathematics of Egyptian Fractions

In approximately 1550 BC a scribe named Ahmes copied a 200-year-old math-
ematical text onto a 6-metre-long scroll of papyrus [27]. Despite his lack of
knowledge of the future fame his work would earn him, Ahmes went on to be-
come the first historical mathematical figure to use fractions, as well as the
earliest to be named. However, in the scroll he claims not to be the original
creator of his mathematical writings, but rather a scribe, copying another doc-
ument almost 500 years older!

Ahmes’ scroll was lost to the sands of time, only to be rediscovered in the
17th Century in or around the Ramesseum, the memorial temple of Pharaoh
Ramesses II. The scroll was sold to Alexander Henry Rhind, from whom it
got its name, before being acquired by the British Museum. Along with the
Egyptian Mathematical Leather Roll (EMLR) and the Akhmim wooden tablets,
the Rhind Mathematical Papyrus (RMP) contains much information about the
mathematics of ancient Egyptians, with a particular focus on Egyptian frac-
tions, geometry, algebra, and series. An excellent transcription and translation
can be found in [14]. However, before delving into the world of Egyptian frac-
tions and their associated problems, it is necessary to discuss ancient Egyptian
mathematical notation. Much of the historical ideas in the following sections
come from ‘Mathematics in Ancient Egypt: A Contextual History’ [21], ‘Science
Awakening’ [34] and ‘The Secret History of Writing’ [1].

3.1 Ancient Egyptian Notation

Ancient Egypt was dominated by hieroglyphics, and its mathematics was no
different. Different hieroglyphic symbols, shown in Figure 3.1, were used to rep-
resent powers of 10, with the symbols functioning additively to create numbers,
as seen in Figures 3.2 and 3.3.

Figure 3.1: Hieroglyphic numerals [28]
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Figure 3.2: 276 in hieroglyphs [28]

Figure 3.3: 4622 in hieroglyphs [28]

Figure 3.4: Hieratic numerals [28]

Hieratic script can be considered as to hieroglyphs what modern handwriting
is to printed script. It was a faster and easier way of writing than hieroglyphs,
using reed pens and papyrus instead of chisels and stone, and could be used
in everyday life. As such there is a greater variation of hieratic symbols, and
although clearly inspired by hieroglyphs, many symbols were transformed - ar-
guably to make writing faster. For example, hieratic script had a symbol for
each multiple of 10, not just each power of 10, which can be seen in Figure
3.4. Thus the number 2000 became one symbol, instead of two. Mathematical
hieratic symbols also worked additively, and the advantage of hieratic script is
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Figure 3.5: 2765 written in hieratic
script, right to left [28]

Figure 3.6: 2765 written in hieratic
script, left to right [28]

clear in the case of 9999, which would take 36 hieroglyphs to write, but only 4
hieratic symbols (as shown in my first video).

Despite also being base-10, ancient Egyptian symbols did not represent true
place value as our modern number system does. Where our usage of columns
and positions represents the value of a symbol, for hieroglyphic and hieratic
script the order of symbols could be rearranged without altering the meaning -
the number system was non-positional. This is clear to see in Figures 3.5 and 3.6.

Furthermore, these number systems lacked one key symbol: 0. 0 is an ex-
tremely powerful symbol and allows mathematicians to access many mathemat-
ical concepts, for example negative numbers. Additionally, without a symbol
for 0 it is far more difficult to show when an equation has become balanced, or
to have the solution to questions like 2 subtract 2. It has been suggested that
in balanced situations, ancient Egyptian mathematicians wrote the hieroglyph
nfr meaning ‘complete’ or ‘perfect’ shown in Figure 3.7.

Figure 3.7: Nfr, meaning ‘complete’ [25]
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3.2 Simple Calculations

Due to this number system, ancient Egyptian problem-solving - in particular
multiplication and division - was primarily based on a trial-and-error approach,
often using multiples of 2 to construct a factor or multiple. These following
examples are inspired by similar problems in the RMP [2,3, 18,22,29,42].

Example 1: 23 · 36 = x
Solution:
Firstly create a bank of multiples of 36. Then add these multiples to get 23 · 36.

1 · 36 = 36

2 · 36 = 72

4 · 36 = 144

8 · 36 = 288

16 · 36 = 576

23 = 16 + 4 + 2 + 1

⇒ 23 · 36 = (16 + 4 + 2 + 1) · 36

= 576 + 144 + 72 + 36

= 828

Example 2: 156÷ 12 = x
Solution:
Firstly create a bank of multiples of 12. Then add these multiples to get x ·12 =
156.

1 · 12 = 12

2 · 12 = 24

4 · 12 = 48

8 · 12 = 96

16 · 12 = 192

156 = 96 + 48 + 12

= 8 · 12 + 4 · 12 + 1 · 12

= 13 · 12

⇒ x = 13

What about cases where the answer is not a whole number? In our modern
age we might use a calculator, or use our system of place value to divide and get
decimal answers. Ancient Egyptian mathematicians equally recognised a need
for small values less than one, and turned to fractional representations.
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Figure 3.8: r, meaning ‘a part’ [23]

3.3 Fractions

In many ways ancient Egyptian fractions worked just as our modern ones do.
They had a symbol denoting fractional nature, which was usually written over,
or to the side of, the numbers of the denominator, just like 1

2 and 1/2. How-
ever, all the fractions (bar a couple of exceptions shown in Figure 3.9) were
unit fractions, written in the form 1

n . The symbol denoting ‘one over’ was the
hieroglyphic symbol r, representing a mouth, and meaning ‘a part’, shown in
Figure 3.8. Thus it can be understood that ancient Egyptian fractions were
written as ‘a part out of n parts’.

Figure 3.9: Hieroglyphic exceptions to the 1/n fraction format [24]

Example 3: Write 1
5 and 1

3 in Egyptian hieroglyph form.
Solution:

Figure 3.10: 1/3 [28] Figure 3.11: 1/5 [28]

The hieratic form of fractions followed the same rules, but were written as
the hieratic symbol with a dot over it (instead of the hieroglyph for ‘a part’).
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This is simple to construct for fractions already of the form 1
n , but for other

fractions with larger denominators it can be much more difficult. Ancient Egyp-
tians wrote such fractions as sums of distinct unit fractions. The RMP contains
a 2/n table, spread over nine sheets of papyrus, which describes the Egyptian
fraction decompositions of some fifty fractions of the form 2/n, n odd [22,39,42].

Example 4:

2

47
=

1

30
+

1

41
+

1

470

2

91
=

1

70
+

1

130

It is from this that we gain our modern definition of an Egyptian fraction -
a finite sum of distinct unit fractions.

Figure 3.12: The Rhind Mathematical Papyrus [39]
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Figure 3.13: 2/n table from the RMP [39]

3.4 The Greedy Algorithm

There are many ways to construct Egyptian fractions, one such way being Fi-
bonacci’s Greedy Algorithm [20,22].
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Fibonacci’s Greedy Algorithm

• Given a rational fraction of the form a
b , if a = 1 then the algorithm

terminates. Otherwise, subtract the greatest fraction of the form
1
n , n ∈ R, which gives a non-negative remainder.

• The solution to this subtraction is of the form a′

b′ .

• Using a′

b′ as start value, repeat the algorithm.

• Repeat until algorithm terminates.

The Egyptian fraction form of a
b is the sum of the fractions of the form

1
n .

Example 5: Write 7
12 as an Egyptian fraction using Fibonacci’s Greedy Algo-

rithm.
Solution:

7

12
− 1

12
=

1

2

⇒ 7

12
=

1

12
+

1

2

The algorithm can also be expressed using the ceiling function.

a

b
=

1⌈
b
a

⌉ +
(−b) mod a

b
⌈
b
a

⌉ (1)

Example 6: Write 11
12 as an Egyptian fraction using (1).

Solution:

11

12
=

1

2
+

5

12
5

12
=

1

3
+

1

12

⇒11

12
=

1

2
+

1

3
+

1

12
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Evidently this greedy algorithm cannot be used to create expansions which
use the Egyptian exception symbols like 2/3 etc. To allow for such representa-
tions I have modified the algorithm.

Modified Greedy Algorithm

• Given a rational fraction of the form a
b , if a = 1 then the algorithm

terminates. Otherwise, subtract the greatest fraction p
q which

gives a non-negative remainder, where p
q can be of the form i.

2
3 , ii. 3

4 or iii. 1
n , n ∈ R.

• The solution to this subtraction is of the form a′

b′ .

• Using a′

b′ as start value, repeat the algorithm.

• Repeat until algorithm terminates.

The Egyptian fraction form of a
b is the sum of the fractions subtracted

in the algorithm.

Example 7: Write 8
10 as an Egyptian fraction using a. the Greedy Algorithm

and b. the Modified Greedy Algorithm.
Solution:
a.

8

10
− 1

2
=

3

10
3

10
− 1

5
=

1

10

⇒ 8

10
=

1

2
+

1

5
+

1

10

b.

8

10
− 2

3
=

2

15
2

15
− 1

10
=

1

30

⇒ 8

10
=

2

3
+

1

10
+

1

30

13



3.5 The Splitting Algorithm

Another method for creating Egyptian fractions is the splitting algorithm [4,22],
for which proofs can be found in [4,6]. This algorithm uses the Splitting Identity
(2).

1

xk
=

1

xk + 1
+

1

xk(xk + 1)
(2)

Splitting Algorithm

• Given a sum of unit fractions 1
x1

+ . . .+ 1
xL

, where x1, . . . , xL ∈ Z+,

if any xk has a multiplicity µ > 1, then (µ − 1) copies of 1
xk

are

replaced using (2).

• Repeat until there are no more duplicate unit fractions.

For a rational fraction of the form a
b , let a

b be written as the sum of a
unit fractions of the form 1

b . Then apply the splitting algorithm.

Example 8: Write 3
11 as an Egyptian fraction using the Splitting Algorithm.

Solution:

3

11
=

1

11
+

1

11
+

1

11

=
1

11
+

(
1

12
+

1

132

)
+

(
1

12
+

1

132

)
by applying (2).

=
1

11
+

1

12
+

1

132
+

1

13
+

1

156
+

1

133
+

1

17556

3.6 Farey Sequences

Given two fractions in simplest form (irreducible fractions), a
b and c

d , adding
the numerators and the denominators gives a fraction a+c

b+d that falls between
a
b and c

d . This fraction is known as a mediant and may not always be exactly
halfway between a

b and c
d [20, 26].

Theorem 3.1. If a
b <

c
d then the mediant is a+c

b+d , such that a
b <

a+c
b+d <

c
d .

Proof.

a

b
<
c

d
⇒ ad < bc (3)
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a+ c

b+ d
− a

b
=
ab+ bc− ab− ad

b(b+ d)
=
bc− ad
b(b+ d)

> 0 by (3)

⇒ a

b
<
a+ c

b+ d

c

d
− a+ c

b+ d
=
bc+ cd− ad− cd

d(b+ d)
=

bc− ad
d(b+ d)

> 0 by (3)

⇒ c

d
>
a+ c

b+ d

Hence, a
b <

a+c
b+d <

c
d .

The Farey sequence Fn for any positive integer n is the set of irreducible
rational numbers a

b with 0 ≤ a ≤ b ≤ n and gcd(a, b) = 1 arranged in increasing
order [20]. Equivalently Fn = {ab | 0 ≤ a

b ≤ 1, gcd(a, b) = 1, n ≥ b}. This
sequence may be used to find Egyptian fractions.

F1 =

{
0

1
,

1

1

}
F2 =

{
0

1
,

1

2
,

1

1

}
F3 =

{
0

1
,

1

3
,

1

2
,

2

3
,

1

1

}
F4 =

{
0

1
,

1

4
,

1

3
,

1

2
,

2

3
,

3

4
,

1

1

}
F5 =

{
0

1
,

1

5
,

1

4
,

1

3
,

2

5
,

1

2
,

3

5
,

2

3
,

3

4
,

4

5
,

1

1

}

Farey neighbours are two fractions a
b <

c
d that are adjacent in a given Farey

sequence, Fn. They have the property that |bc− ad| = 1.

Theorem 3.2. For a
b and c

d with 0 ≤ a
b < c

d ≤ 1, these fractions are Farey
neighbours iff |bc− ad| = 1.

Proof. For a
b and c

d are Farey neighbours, we can prove by induction that
|bc− ad| = 1.
Base Case: F1 = { 01 ,

1
1} so |bc− ad| = |1− 0| = 1 hence this holds for n=1.

Assume it holds for Fn = {..., ab ,
c
d , ...} i.e. |bc− ad| = 1.

Then Fn+1 = {..., ab ,
a+c
b+d ,

c
d , ...}, and |b(a+ c)− a(b+ d)| = |ab+ bc− ab− ad| =

|bc− ad| = 1.
Hence this holds for n+ 1, and so by the principal of induction, if a

b and c
d are

Farey neighbours, then |bc− ad| = 1 for all n ∈ Z+.

For the converse, if we have three values in some Farey sequence, a
b ,

x
y ,

c
d

15



such that a
b <

x
y <

c
d and bx− ay = cy − dx = 1 then we can see that

bx+ dx = cy + ay

⇒ x(b+ d) = y(a+ c)

⇒ x

y
=
a+ c

b+ d
.

Hence x
y is the mediant between a

b and c
d so for some Farey sequence they

are neighbours (although for later Farey sequences subsequent mediants may
separate them).

To construct Egyptian fractions using the Farey sequence we can use the
algorithm developed by Bleicher in 1968 [5, 15]. It is useful to first find a rela-
tionship between elements in a given Farey sequence Fbn .

Proposition 3.1. For Farey neighbours in a Farey sequence Fbn , fn = fn+1 +
1

bnbn+1
.

Proof. Begin by defining the sequence such that a
b = fn+1 = an+1

bn+1
< fn is the

neighbouring term to c
d = fn = an

bn
. We know from Theorem 3.2 that for Farey

neighbours bc− ad = 1.
Then,

bc = 1 + ad

⇒ c =
1 + ad

b

⇒ c

d
=

1 + ad

bd

⇒ c

d
=
a

b
+

1

bd

⇒ an
bn

=
an+1

bn+1
+

1

bnbn+1

⇒ fn = fn+1 +
1

bnbn+1
(4)

16



Farey Sequence Algorithm

• Given a rational, non-zero, irreducible fraction fn = an

bn
in a

Farey sequence Fbn , the next smallest element is the adjacent
term fn+1 < fn. Subtract fn+1 from fn. (Recall from (4) that
fn = fn+1 + 1

bnbn+1
, so the result of this subtraction will itself be

a unit fraction: 1
bnbn+1

).

• Repeat until fn+1 = 0 i.e. all unit fraction differences have been
found.

fn can then be expressed as the sum of the unit fraction differences (the
solutions to the subtractions).

It is clear that as bn ≤ n we must have that bn+1 ≤ bn. Then as fn+1 < fn
we must have that an+1 < an. Thus the sequence for an is strictly decreasing
and must eventually reach 0, hence Farey sequence Egyptian fractions must be
finite.

Example 9: Write 4
5 as an Egyptian fraction using the Farey Sequence Algo-

rithm.
Solution:
Begin with the Farey sequence containing 4

5 .
F5 =

{
0
1 ,

1
5 ,

1
4 ,

1
3 ,

2
5 ,

1
2 ,

3
5 ,

2
3 ,

3
4 ,

4
5 ,

1
1

}
4

5
− 3

4
=

1

20
3

4
− 2

3
=

1

12
2

3
− 3

5
=

1

15
3

5
− 1

2
=

1

10
1

2
has numerator 1, hence the algorithm terminates.

⇒4

5
=

1

20
+

1

12
+

1

15
+

1

10
+

1

2

3.7 Practical Numbers

Many of the ideas for this section can be found in [33,35, 38]. A proper divisor
of a number n is a divisor of n, excluding n itself. A practical number, N , is a
positive integer such that all positive integers less than N can be written as the
sum of its proper divisors. Examples include 1, 2, 4, 6, 8, 12, 16, 18, 20, 24, 28,
30, 32, 36,...
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Practical numbers can be used to write Egyptian fractions. Given a fraction
a
b with b being a practical number and a < b, we can then write a as a sum

of the proper divisors of b. Thus we can write a
b as a sum

∑ di

b with di being
the proper divisors of b. These fractions can then be simplified to unit fractions
as we can divide both the top and bottom of each fraction by di, giving that
a
b =

∑
1

b/di
.

Example 10: Show 12 is a practical number.
Solution:
The proper divisors of 12 are 1,2,3,4,6. The positive integers less than 12 are
1,2,3,4,5,6,7,8,9,10,11.

1 = 1 7 = 6 + 1

2 = 2 8 = 6 + 2

3 = 3 9 = 6 + 3

4 = 4 10 = 6 + 4

5 = 1 + 4 11 = 6 + 4 + 1

6 = 6

All the positive integers less than 12 can be written as a sum of its proper
divisors, thus 12 is a practical number.

Example 11: Write 7/18 as an Egyptian fraction using practical numbers.
Solution:
The proper divisors of 18 are 1, 2, 3, 6, 9.

7 = 6 + 1

⇒ 7

18
=

1

18
+

6

18

=
1

18
+

1

3

3.8 Other Methods

There are many more methods which can be used to write Egyptian fractions,
some of which are described below [12,36].

For fractions of the form n
pq , where p+ q is a multiple of n,

n

pq
=

n

p(p+ q)
+

n

q(p+ q)
(5)

=
1

p(p+q)
n

+
1

q(p+q)
n

(6)

For a fraction of the form 2
n there are several simple expansions which can be

used to form Egyptian fractions.
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• If n = 0 mod 3:

2

n
=

1

2
· 1

n
+

2

3
· 1

n
(7)

• If n = 0 mod 5:

2

n
=

1

3
· 1

n
+

5

3
· 1

n
(8)

• In a more general case, we have

2

n
=

2

n+ 1
+

2

n(n+ 1)
(9)

=
1

n+1
2

+
1

n(n+1)
2

(10)

• For fractions of the form 2
p , with p prime, where p

2 < A < p, and A has
many divisors:

2

p
=

1

A
+

2A− p
A · p

(11)

Alternatively, we may have

2

p
=

1

p
+

1

2p
+

1

3p
+

1

6p
(12)

This small selection of possible expansion equations demonstrates how var-
ied and easy to manipulate the Egyptian fractions are, which is what lends them
to being very useful in many different applications - sometimes even more useful
than modern fractions. For example, consider splitting loaves of bread or (as
in my video!) cakes, between multiple people. A modern person might turn to
their mobile phone, or calculator, and split the number of loaves (n) over the
number of people (q), giving n

q , then split each loaf into q parts and give each
person n of them. However, this is not necessarily the best or most efficient
method - it involves all the loaves being split into many parts, and each person
will get many small pieces. An Egyptian fraction expansion, however, may be
far simpler, as seen in the example below which comes from the Rhind Papyrus.

Example 12: Share 6 loaves of bread between 10 people
Solution:
Write this as the fraction 6

10 then expand this in Egyptian form.
Using the Greedy Algorithm

6

10
− 1

2
=

1

10

⇒ 6

10
=

1

2
+

1

10

Thus each guest receives 1
2 and 1

10 of a cake.This is clearly much easier to do
than split each loaf into 10, and give each person 6 pieces.
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3.9 Comparing Methods

The efficiency of writing out x
y in terms of the number of terms can be expressed

for different algorithms.

First, using practical numbers, the number of terms is O(log(y)), meaning
that it grows slowly as y increases. This suggests that this approach is efficient
and can be applied to large denominators without excessive computational cost.

For the greedy algorithm, the maximum number of terms in the representa-
tion of x

y is x - the numerator decreases after each stage of the algorithm. This
approach is also efficient and can be applied to large numerators.

Using the splitting algorithm, if no number appears twice in the splitting
identity i.e. 1

yn+1 6=
1

yn+1(yn+1+1)∀n, we can consider the algorithm as having

x − 1 splits. Each step of the algorithm doubles the number of terms in the
representation, so the total number of terms is O(x) In practice, however, num-
bers do sometimes appear twice in the splitting algorithm so the total number
of terms could be much larger, and of a greater order.

Overall, it can be seen that the practical approach is efficient for large de-
nominators and that the greedy approach is efficient for large numerators. The
splitting algorithm can also be used but may be less efficient in practice.
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4 Modern Problems and Applications

4.1 Engel Expansions

Some of the ideas in this section come from [13, 37]. Engel’s expansion states
that given x ∈ R+, x = 1

a1
+ 1

a1a2
+ 1

a1a2a3
+ . . ., where (a1, a2, a3, . . .) is a unique

non-decreasing sequence of positive integers. For irrational x the Engel expan-
sion is infinite, for rational x the Engel expansion is finite and is an Egyptian
fraction expansion for x, which I prove below.

Engel Expansion Algorithm for rational x
Given a rational, positive number x, let

x = u1

ai =

⌈
1

ui

⌉
ui+1 = (ui · ai)− 1

Repeat until ui = 0

Theorem 4.1. Rational numbers have finite Engel expansions.

Proof. Let x
y ∈ Q with y 6= 0 i.e. x, y ∈ Z.

Follow the Engel Expansion Algorithm with u1 = x
y and a1 =

⌈
y
x

⌉
:

u2 = (u1 · a1)− 1 =

(
x

y
·
⌈y
x

⌉)
− 1 =

x ·
⌈
y
x

⌉
− y

y

By the definition of the ceiling function,

y

x
≤
⌈y
x

⌉
<
y

x
+ 1

⇒y

x
− 1 ≤

⌈y
x

⌉
− 1 <

y

x

⇒
⌈y
x

⌉
− 1 <

y

x
≤
⌈y
x

⌉
Multiplying by x gives

x ·
⌈y
x

⌉
− x < y

Adding x and subtracting y gives

x ·
⌈y
x

⌉
− y < x (13)

The RHS of (13), x, is the numerator for u1 whilst the LHS, x ·
⌈
y
x

⌉
− y, is the

numerator for u2. Thus the numerator for u2 < numerator for u1. This holds
for all ui (the proof by induction of which is trivial) so for all i the numerator
of ui+1 < the numerator of ui. Clearly these numerators are strictly decreasing
and so will eventually reach 0, at which point the algorithm stops. Thus the
Engel expansion for a rational number is finite.
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Example 13: Write 49
40 as an Egyptian fraction using the Engel Expansion.

Solution:

u1 =
49

40
a1 =

⌈
40

49

⌉
= 1

u2 =
49

40
· 1− 1 =

9

40
a2 =

⌈
40

9

⌉
= 5

u3 =
9

40
· 5− 1 =

1

8
a3 =

⌈
8

1

⌉
= 8

u4 =
1

8
· 8− 1 = 0

Thus
49

40
=

1

1
+

1

1 · 5
+

1

1 · 5 · 8

= 1 +
1

5
+

1

40

4.2 Sylvester’s Sequence

Sylvester’s sequence is an integer sequence for which each term is the product
of the previous terms, plus 1. It can be used to find a finite representation of 1
in Egyptian fractions. Ideas for this section can be found in [13,16,40].

The first 6 terms are 2,3,7,43,1807,3263443,. . ..The recursive relationship de-
scribing these terms is

sj = 1 +

j−1∏
i=0

si (14)

which can also be written as

sj = 1 +

j−1∏
i=0

si

= 1 + sj−1

j−2∏
i=0

si

Using the above relationship (14) we can see that

sj = 1 + sj−1 (sj−1 − 1) = sj−1
2 − sj−1 + 1 (15)
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The sum of the reciprocals of Sylvester’s sequence is

∞∑
i=0

1

si
=

1

2
+

1

3
+

1

7
+

1

43
+

1

1807
+ · · · (16)

The first three partial sums are u1 = 1
2 , u2 = 5

6 , u3 = 41
42 and the general form

of the partial sums (which I have proved by induction below) is

uj =

j−1∑
i=0

1

si
= 1− 1

sj − 1
=
sj − 2

sj − 1
(17)

Theorem 4.2. The general form of the partial sums for reciprocals of Sylvester’s
sequence is uj =

∑j−1
i=0

1
si

= 1− 1
sj−1 =

sj−2
sj−1 .

Proof. Base Case: Let j = 1.

a.

j−1∑
i=0

1

si
=

0∑
i=0

1

si
= s0 =

1

2
, b.

sj − 2

sj − 1
=
s1 − 2

s1 − 1
=

3− 2

3− 1
=

1

2

Inductive Hypothesis:
Assume that

uj =

j−1∑
i=0

1

si
=
sj − 2

sj − 1
.

Then,

uj+1 =

j∑
i=0

1

si

=

j−1∑
i=0

1

si
+

1

sj

=
sj − 2

sj − 1
+

1

sj
, by the inductive hypothesis.

=
sj(sj − 2) + sj − 1

sj(sj − 1)

=
sj

2 − sj − 1

sj2 − sj

=
sj+1 − 2

sj+1 − 1
by (15).

From this it is clear that the sum of the reciprocals converges to 1, which I
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briefly detail below.

∞∑
i=0

1

si
= lim

j→∞
uj

= lim
j→∞

sj − 2

sj − 1

= 1

The series of the sum of the reciprocals therefore gives an infinite Egyptian
fraction representation for 1.

1 =
1

2
+

1

3
+

1

7
+

1

43
+

1

1807
+ · · ·

Thus by truncating the series at any point and subtracting 1 from the final
denominator, we can find a finite Egyptian representation for 1.

Sylvester Algorithm
For the sum of the inverses of Sylvester’s sequence,

∑∞
i=0

1
si

, to find an
Egyptian fraction representation of 1 of length n, truncate the sum at
the nth term 1

sn
and replace 1

sn
with 1

sn−1 .

We can intuitively understand how Sylvester’s algorithm works by consid-
ering it as a greedy algorithm, where at each point in the algorithm we choose
the smallest denominator to make the sum underestimate 1.

Example 14: Using Sylvester’s sequence, find a finite Egyptian fraction expan-
sion of 1, using a. 3 fractions and b. 5 fractions.
Solution:
a. For n = 3

1 =
1

2
+

1

3
+

1

7− 1

=
1

2
+

1

3
+

1

6

b. For n = 5

1 =
1

2
+

1

3
+

1

7
+

1

43
+

1

1807− 1

=
1

2
+

1

3
+

1

7
+

1

43
+

1

1806

Furthermore, the first k terms of the infinite series give the closest under-
estimate of 1 for any k-term Egyptian fraction representation e.g. k = 4 :
1
2 + 1

3 + 1
7 + 1

43 = 1805
1806 . For any number in the open interval ( 1805

1806 , 1) the
Egyptian fraction representation has at least 5 terms. I have proved this below
[30,32].
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First let us consider Sylvester’s sequence, si, where sj = s0s1s2 · · · sj−1 + 1.
We have already proven that the general form of each partial sum is (17)

uj =

j−1∑
i=0

1

si
= 1− 1

sj − 1

Then we can say that

uj+1 = uj +
1

sj
(18)

= 1 +
−sj + sj − 1

sj (sj − 1)
(19)

= 1− 1

sj (sj − 1)
(20)

(21)

Considering the definition of sj , we can see that

sj − 1 = s0s1s2 · · · sj−1
sj (sj − 1) = sj (s0s1s2 · · · sj−1)

= sj+1 − 1

⇒ uj+1 = 1− 1

sj+1 − 1

Proposition 4.1. Let v > sj, then uj + 1
v < uj+1

Proof.

uj +
1

v
= 1− 1

sj − 1
+

1

v

< 1 +
−sj + sj − 1

sj (sj − 1)

= uj+1 by (20)

⇒uj +
1

v
< uj+1

Proposition 4.2. Let u ≤ sj − 1, then uj + 1
u ≥ 1

Proof.

uj +
1

u
= 1− 1

sj − 1
+

1

u

≥ 1− 1

u
+

1

u

⇒uj +
1

u
≥ 1
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Then using these results it is clear that if uj is the best k-term unit fraction
approximation to 1 (where j = k − 1), then uj+1 is the best (k + 1)-term unit
fraction approximation to 1. �

It is important to note that this proof depends upon the fact that each uj+1

must include the previous k fractions from uj .

4.3 Primary Pseudoperfect Numbers

A pseudoperfect number is a positive integer which is the sum of some or all of
its proper divisors e.g. 20 = 1 + 4 + 5 + 10. A pseudoperfect number which is
the sum of all its proper divisors is a perfect number. These numbers feature in
some interesting mathematical problems, and I will use them in the next section
to find solutions of such a problem. Some of the mathematics described in this
section can be found in [11,31,35].

A primary pseudoperfect number (PPN) is an integer N > 1 such that the
reciprocals of it and its prime factors sum to 1. There are eight known primary
pseudoperfect numbers:

2, 6, 42, 1806, 47058, 2214502422, 52495396602, 8490421583559688410706771261086

Interestingly, the first four of these are one less than the first four terms of
Sylvester’s sequence.

Primary Pseudoperfect Algorithm
Let p|N be the sequence of prime divisors of N, then N is a PPN if

1

N
+
∑
p|N

1

p
= 1 (22)

Equivalently, N is a PPN if

1 +
∑
p|N

N

p
= N (23)

PPNs can be used to help find solutions to modern problems, like Znàm’s
problem.

4.4 Znàm’s Problem

Znàm’s problem [8, 10, 41] searches for sets of integers where each element is a
proper divisor of the product of the other elements, plus 1. Alternatively, it
asks which sets {n1, . . . , nk} ∈ Z exist such that for each j, nj divides (but is
not equal to)

 k∏
i 6=j

ni

+ 1 (24)
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Example 15: One such sequence for k = 5 is {2,3,7,47,395}.

3 · 7 · 47 · 395 + 1 = 389866 = 0 mod 2, 6= 2

2 · 7 · 47 · 395 + 1 = 259911 = 0 mod 3, 6= 3

2 · 3 · 47 · 395 + 1 = 111391 = 0 mod 7, 6= 7

2 · 3 · 7 · 395 + 1 = 16591 = 0 mod 47, 6= 47

2 · 3 · 7 · 47 + 1 = 1975 = 0 mod 395, 6= 395

Znàm’s improper problem asks which sets of integers have the property that
each element is a divisor (not necessarily a proper divisor) of the product of the
other elements, plus 1. Thus any set of integers which is a solution to Znàm’s
problem is also a solution to Znàm’s improper problem.

Division by the product of the values nj shows that solutions to Znàm’s
improper problem are solutions to

k∑
j=1

1

nj
+

k∏
j=1

1

nj
= m (25)

with m,nj ∈ Z. I have detailed the process below.

Theorem 4.3. Solutions to Znàm’s improper problem, i.e. divisors of(∏k
i 6=j ni

)
+ 1, are solutions to (25).

Proof. Let nj be a divisor of
(∏k

i 6=j nj

)
+ 1.

This is equivalent to saying k∏
i6=j

nj

 = −1 mod nj

Then, for all j,

k∑
j=1

k∏
i 6=j

ni + 1 = 0 mod nj

This can be considered as

k∑
j=1

∏
i 6=j

ni + 1 = m ·
k∏

j=1

nj

where m ∈ Z+. If we then divide by the product
∏k

j=1 nj we get∑k
j=1

∏
i6=j ni∏k

j=1 nj
+

1∏k
j=1 nj

=
m ·

∏k
j=1 nj∏k

j=1 nj
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Which becomes ∑k
j=1

∏
i 6=j ni∏k

j=1 nj
+

k∏
j=1

1

nj
= m (26)

Let us consider the first term of (26). It is the sum of the products of ni
excluding the nj term, divided by the product of all the nj terms. This would
simplify to a fraction 1

nj
, most easily seen in an example e.g. for k=3:∑3

j=1

∏
i 6=j ni∏3

j=1 nj
=

(n2 · n3) + (n1 · n3) + (n1 · n2)

n1 · n2 · n3
=

1

n1
+

1

n2
+

1

n3

Overall we can write
∑

1
nj

, and thus we retrieve (25):

k∑
j=1

1

nj
+

k∏
j=1

1

nj
= m

All known solutions are solutions to (25) with m = 1,

k∑
j=1

1

nj
+

k∏
j=1

1

nj
= 1 (27)

leading to Egyptian fraction representations of 1 as a sum of unit fractions.

4.5 Erdős-Straus and Sierpiński Conjectures

Much of the mathematics in this section comes from [7,9, 12,17,19,22].

There are some problems that are inspired by, or based upon, Egyptian
fractions that have yet to be solved! For example, does a rule exist that allows
us to write every fraction as the sum of three unit fractions? It has been proven
that every fraction 3

n where n is not a multiple of 3, and n is odd, can be written
as 1

a + 1
b + 1

c for distinct, odd, a,b,c. The Erdős-Straus conjecture is that we
can find a similar rule for fractions 4

n .

Erdős-Straus Conjecture
Every fraction 4

n , with n ≥ 2, can be written as the sum of three unit
fractions.

This has been verified up to the 51000000th prime, n = 1003162753, but has
not been proven or disproven. Sierpiński suggested this is also true for fractions
5
n , which has been verified up to n = 922321.
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Example 16: Some examples that supports the Erdős-Straus conjecture are

4

13
=

1

4
+

1

26
+

1

52
4

19
=

1

6
+

1

38
+

1

57
4

42
=

1

12
+

1

126
+

1

252
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5 Results

5.1 Survey

As part of my research project, I conducted a series of video presentations to my
target audience, and gathered their responses through a feedback form included
in the appendix. In order to obtain more comprehensive feedback, I played the
video for four of my math tutees - Tutees A, E, I, and O - and asked them to
provide detailed responses. Tutees A and E, both 12 years old, expressed great
interest in the potential applications of Egyptian fractions, with Tutee E even
conducting their own research on the topic before the next session. Tutee I,
who is 13 years old, enjoyed the video and the mathematics, but did not show a
significant interest in exploring the topic further. Tutee O, aged 17, found the
video amusing but too easy, and was able to progress to more complicated cal-
culations using Egyptian reasoning and fractions, such as sums of series. They
found the topics in the second video more fitting to their level and found the
maths quite interesting.

Additionally, I presented the video to School X’s maths club, a Year 9 top
set, a Year 10 middle set, and a Year 12 A-Level Mathematics class. In order
to accommodate for multiple students working at varying rates I distributed
a handout containing both the hieroglyphic and hieratic symbols. During the
maths club session, I expanded beyond the first video into the second video’s
content, thanks to the presence of both math enthusiasts and teachers. The
feedback from the three teachers present, who seemed highly interested in the
topic and asked thought-provoking questions, was very positive, indicating that
the video and the maths were enjoyable to them. This led me to believe that
these videos could effectively engage individuals beyond my intended audience’s
age range.

Overall, I collected 40 responses from students, which had overall mean
scores of 4.09, 4.02, 4.32, and 4.41 for Interesting, Engaging, Understandable,
and Well-structured, respectively. Each category could receive a score from 1
to 5, with 1 representing a low score and 5 representing a high score. The
most common responses were 4, 4, 5, and 5 for the same criteria. While 34
respondents positively received the video, two felt neutral about it, three dis-
liked it, and one did not respond. Figure A.3 shows the mean score for each
category by age. Based on these results, it can be concluded that the video was
generally well-received, with some respondents having stronger positive feelings
than others, as evidenced by the mean scores and modal responses. However, it
should be noted that a small number of respondents did not like the video, and
there were also a few who felt neutral about it, suggesting that the video may
not be universally appealing. It is also worth noting that one respondent did
not provide any feedback, but this is does not significantly affect the results.
Overall, it seems that the video was successful in engaging and communicating
with the target audience, but there may be room for improvement to increase
its appeal to those who did not respond as positively.

Of the 40 participants, 36 chose to leave further feedback, of which I received
10 entirely positive, 10 entirely negative and 15 mixed comments. Based on
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these results, it can be concluded that the video elicited diverse opinions among
the participants. The fact that a significant proportion of participants provided
mixed feedback suggests that the video may have been perceived differently by
different individuals, with some finding it more engaging and interesting than
others. Several recurring feedback comments indicated that the video was too
slow, which led to difficulty in maintaining attention, and the explanation of
the example was unclear. Interestingly, other respondents provided feedback
that contradicted this, stating that the video was too fast-paced. However,
34 participants reacted positively to the video suggesting that it was generally
well-received by the majority of the viewers, with responses describing how the
maths was well-explained; the practice questions helped with understanding;
the video was intriguing, logical and well-organised in terms of increasing diffi-
culty; and even how the topic was “more interesting than normal maths”.

Overall, the results suggest that the videos required some fine-tuning and
modification. As a result, I made some changes to my piece of engagement,
including adjusting the pace and level of difficulty, improving the clarity of
instructions and explanations, and incorporating more interactive elements to
keep the viewers engaged. It is important to consider that some learners may
benefit from more visual aids, while others may prefer hands-on activities. By
taking into account these factors and addressing the feedback received, I was
able to improve the videos to better meet the needs of the audience and enhance
their learning experience.

From my own observations of these sessions I noted several key points: First,
Year 9 and 10 classes were enthusiastic, while Year 12 was more focused on exam
work. Second, the topic of Egyptian fractions was noticeably different to typi-
cal curriculum topics. Finally, while the video format worked well for a single
viewer, allowing them to pause and skip back and forth, additional materi-
als like printed symbol sheets and a PowerPoint presentation for teachers would
be necessary if I wanted to expand the engagement activity to a classroom level.

5.2 Obstacles

Throughout my research, I encountered several obstacles that required over-
coming to complete the project successfully. One of the significant issues was
related to technology and software. I needed to use specific software to create
the video and download and store it efficiently, which posed some challenges.
The website I used had limited download capacity and occasionally corrupted
audio files, resulting in the need for me to re-record certain segments. Another
obstacle was related to access to books and resources. I needed to access specific
books and papers to ensure the information presented in the video was accurate
and credible, but they were not always available to me. Thus, I made several
book purchase requests to the library, and eventually received the information
that I needed. Additionally, I faced the challenge of limiting information pre-
sented in the video, making sure it was not too long or containing heavy content
that could overwhelm the audience. I had an overabundance of topics I could
potentially discuss but did not want to create uninteresting or tedious videos,
so decided to explore some topics in this report. Finally, recording the video
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professionally posed another challenge. I needed to ensure my tone of voice and
volume were appropriate for the audience, making sure I captured their atten-
tion and delivered the content effectively. Overcoming these obstacles required a
lot of patience, hard work, and perseverance, which were necessary to complete
the project successfully.

5.3 Reflections

I am aware that I misjudged the difficulty level between the example and final
question in video 1. The example was harder than the final question, and could
have been better explained. As a researcher or educator, it is important to
recognise the difficulty level of materials and content that can effectively en-
gage and challenge students without overwhelming or discouraging them. The
misjudgment of the difficulty level, in this case, highlights the need for careful
consideration and assessment of materials during the design process to ensure
that the content is appropriately aligned with the knowledge and skills of the
target audience. As such, this misjudgment has provided me valuable insights
into the development of educational materials and can inform future research
and teaching practices to enhance student engagement, learning, and achieve-
ment.

If I were to do this project again, I would re-order the video so that the more
complex question came after the easier ones, or alternatively choose a different
example. I would also give longer or more in-depth explanations of examples. I
would also consider adapting my engagement activity to better suit a classroom
environment, including attaching the printable handout, and creating a lesson-
plan or presentation for teachers to use.

The process of gathering feedback and reflecting on my work has been crucial
in improving my ability to create effective and engaging educational materials.
By taking into account the feedback received and adapting my approach ac-
cordingly, I am confident that I can better engage with my intended audience
and promote a deeper understanding of mathematics. This experience has also
highlighted the importance of public engagement and the role that educators
can play in sharing knowledge and making it accessible to everyone.

Despite the potential for improvements, I was asked by School X to provide
my video and handout, so that the topic could be added to their curriculum
as part of mathematical exploration! Thus it is clear that my project was suc-
cessful, and does indeed allow for viewers to engage with the topic of Egyptian
fractions, and explore the exciting world of mathematics.
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6 Conclusion

In conclusion, the process of creating and testing educational materials can be
a challenging and rewarding experience. My research findings demonstrate the
value of using video as an engagement medium for teaching and learning math-
ematical concepts, as it provides a visually engaging and interactive platform
for demonstrating the process of working out questions. Through this project, I
learned the importance of testing and seeking feedback from a target audience
to ensure that the materials are accurately tailored to their needs and abilities.
The feedback I received from both individual students and larger groups pro-
vided valuable insights into the effectiveness of the materials and the ways in
which they could be improved. Additionally, the experience of misjudging the
difficulty level of the example versus the final question in video 1 highlighted
the importance of reflection and the need to continually evaluate and adjust
materials based on feedback and observations. By incorporating these insights
into future projects, I hope to create even more effective and engaging educa-
tional materials that will inspire and motivate students to pursue their interests
in mathematics and other subjects.
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[17] R L Graham, Paul Erdős and Egyptian Fractions, Bolyai society mathematical studies,
2013, pp. 289–309.

[18] J J Gray, M Folkerts, W R Knorr, J L Berggren, and C G Fraser, Mathematics - Math-
ematics in Ancient Egypt, Encyclopedia Britannica (2022).

[19] T R Hagedorn, A proof of a conjecture on Egyptian fractions, Am. Math. Mon. 107
(2000), no. 1, 62.

[20] J A Hanley, Egyptian fractions, Master’s Thesis, San Bernardino, 2002.

[21] A Imhausen, Mathematics in Ancient Egypt: A Contextual History, Princeton University
Press, 2016.

[22] R Knott, Egyptian Fractions, 2021. Accessed: 2023-3-6.

[23] M Kolk, Egyptian hieroglyph for the letter R.

[24] M Millmore, Egyptian Mathematics Numbers Hieroglyph, 2014.

[25] S Nesterov, Triliteral Egyptian hieroglyphics, 2015.

[26] NRICH, Farey Neighbours.

[27] J J O’Connor and E F Robertson, Ahmes - biography, 1997. Accessed: 2023-2-8.

[28] , Egyptian numerals, University of St Andrews, 2000. Accessed: 2023-2-8.

[29] , Mathematics in Egyptian Papyri, 2000.

[30] M Rosenman and F Underwood, 3536, The American Mathematical Monthly 40 (1933),
no. 3, 180–181.

34

1906.00561


[31] J Sondow and K MacMillan, Primary pseudoperfect numbers, arithmetic progressions,
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A Appendix

Figure A.1: Feedback form
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Figure A.2: Handout sheet
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Figure A.3: Column chart of results of questionnaire A.1
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