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Ethical Statement: 
 

This work has been carried out appreciating appropriate ethical considerations. The group work, specifically 

the presentation, was completed successfully and all members acted respectfully. All information that is not 

my own has been referenced at the end of this report. The research included in this report is based off of the 

literature surrounding the topic and no in-person data has been recorded, all has been simulated by myself.  

 

Understanding the bigger picture regarding the uses of chaos, benefits of research in this field have led to 

for example, developments in weather prediction software, however; we must also recognise that the systems 

considered, however deterministic they are in principle, are still unpredictable. There can be major 

implications if they provide inaccurate information – for example safety concerns if weather has predicted to 

be calm yet actually evolves to be inclement. Appreciating these issues as a whole, I believe the execution 

of this project and its applications have been conducted with the correct sensitivity and do not provide any 

concerning ethical risk, with any ethical issues considered above.  
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Direction and aims of the project: 
 

To provide context for the project, I will initially introduce the concept of a chaotic system and the core 

equations that this research is centred on. Additionally, I will consider what this means in the context of 

determinism and the implications of non-linearity on predictability. To give more clarity of the real-world 

applications of chaos theory and examples of such in nature, I aim to provide more examples of chaotic 

systems and their uses.  

 

I will then begin my analysis by numerically solving the Lorenz system of equations to obtain time series 

solutions for the system. I will solve these in two different ways, exemplifying the benefits and drawbacks of 

both methods of numerically solving non-linear ODEs. From this, I will mimic the Lorenz attractor, which I will 

introduce later; and is analogous with this chaotic system. I also aim to describe the locations of the fixed 

points of the system and assess their stability. Histograms for the time series will also be plotted to illustrate 

the nature of the time series and how they are distributed. I aim to explore the parameters of the equations 

in more detail, elucidating for which values the system behaves in a chaotic way and back this with 

quantitative proof.  

 

Following on from this I will introduce Brownian noise and its discovery, effects, and applications. I will 

illustrate Brownian motion in the context of a stochastic differential equation and solve it using the Euler-

Marayama scheme; a modified algorithm for solving such differential equations with a randomly added 

element. The errors associated with each numerical method will also be addressed throughout this report. 

Now understanding the nature of noise within a system, I will move on to investigate its effects when 

combined with the Lorenz system of non-linear equations.  

 

Using this appreciation for noise’s influence on dynamical systems, I aim to establish the nature of both the 

noise-like dynamics generated organically from the Lorenz system as a consequence of the non-linear 

equations it is defined by, and to investigate how much added noise I can introduce to the system whilst still 

maintaining its core properties. By these properties, I mean whether the shape and characteristics of the 

power spectral density; a concept I will present later, are still recognisable as I increase the amplitude of the 

noise.  

 

Succinctly, this project explores the dynamics and behaviour of a non-linear systems of differential equations 

in 3-dimensional space and illustrates the seemingly random manner in which a simple chaotic system can 

evolve. An underpinning idea throughout this investigation is that characterising a system by its assumed 

long-term statistical properties instead of its exact dynamics is an extremely powerful mechanism for 

describing chaotic systems, and once the system is in this state it can be analysed. In this project I want to 

both explore the properties of a chaotic system and also uncover how adding different amplitudes of noise 

can affect it.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 6 

Introduction  
 

What is chaos? 
When we consider linear differential equations, inputting the same initial conditions into the system will 

consistently reproduce the same output, and small perturbations from these initial conditions will reflect in 

the behaviour of this system deviating slightly. Once the system involves terms containing the dependent 

variable being multiplied together, the system of differential equations is then deemed non-linear, with some 

of these systems having potential to demonstrate dynamics far from the predictable outcomes of solving 

linear differential equations. In theory, when simulating the effects of slight adjustments to the initial conditions 

used to govern the system, such effects should be easily determined, since objectively the system the non-

linear equations are describing has a solution, and we know exactly what the initial conditions are. However, 

using these non-linear equations in real-world applications and experimentally, the unpredictability of the 

systems comes to light, where repeating investigations with exactly the same initial conditions to infinite 

accuracy is impossible and thus anticipating the exact behaviour of the system is also impossible.   

  

These seemingly random dynamics give rise to what are understood to be chaotic systems, where extreme 

sensitivity to initial conditions is displayed and the outcomes are unpredictable (Lorenz, 1963). This chaotic 

behaviour is only seen involving equations containing non-linearities. Firstly, to appreciate why I will describe 

such systems as unpredictable even though they are completely solvable, I will first introduce the concept of 

determinism. If a system is known to be deterministic, we can say with certainty what the output will be if we 

know the given input. This then raises the question of why we describe a chaotic system to be seemingly 

unpredictable, and the answer comes from the aforementioned fact that recording initial conditions to infinite 

accuracy is not achievable. Deviations in these initial conditions that are undetectable experimentally, for 

example a change of 1 x 10-9ml in a chemical reaction displaying chaotic behaviour, might give a totally 

unpredictable result (Wegmann and Rössler, 1978). With chaos, changes in initial conditions are amplified 

so incredibly throughout the system that the determinism of the equations becomes redundant, since the true 

initial conditions are unknown. 

 

Arguably one of the first people to consider chaos was Poincare, who noted that a small change in the initial 

conditions of a system can lead to large changes in the result after the system has evolved. 

(Encyclopaedia.com, 2018). In this current investigation, Edward Lorenz’s study of the non-linear dynamics 

of weather systems will be considered extensively.  

 

Examples of chaos 
 
A core text for this project that has been useful is Strogatz’ Nonlinear dynamics and chaos 2nd edition (2015). 

I find that this is lacking in some day-to-day examples of chaos and hence included below are some examples 

to introduce the concept that I will be discussing further.  

 

Consider the famous Belousov—Zhabotinsky chemical reaction, which is a reaction where even when the 

same concentrations of reactants, temperatures and stirring techniques are used, produces a different 

oscillatory behaviour with each repeat. (Petrov et al., 1993). This chaotic oscillatory behaviour which 

characterises the reaction is exemplified by the fact that there are infinitely many oscillatory solutions to the 

reactions rate equations (Wegmann and Rössler, 1978). Wegmann and Rössler also note that if you plot the 

trajectories of the reaction for extremely similar initial conditions they will diverge very quickly (1978).  I will 

revisit this idea in due course and visualise it with my simulations when the trajectories of the Lorenz system 

are considered.  
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For another example, take a double pendulum, where after its release the behaviour over time is 

unpredictable and can’t be replicated – only in simulations with zero noise and identical conditions. Releasing 

the pendulum from a small angle leads to linear dynamics, but with a larger angle the system becomes 

completely unpredictable, and its path is impossible to repeat. Even in carefully controlled experimental 

situations, the smallest amount of variation in the initial conditions will be massively amplified as the system 

evolves (Cross, 2005).   

 

 

In this literature, Shinbrot and colleagues stresses how the unpredictability of the double pendulum is 

specifically a result of the inability to release the pendulum from identical conditions with the infinitesimal 

accuracy required for determinism, in this case an accuracy of   1 x 1016  would be required to predict the 

behaviour of the pendulum for 40 generations (1992). The height of the pendulum and its angle of release 

were controlled by an electromagnet, yet still repeating the trajectories of the double pendulum was 

impossible.  

  

In more day-to-day applications and in relation to the main system being investigated in this report, the same 

explanation can be applied to why we cannot predict the weather accurately to more than a week in advance 

of when it will happen, since even though initial conditions may seem to match those of a previous day in 

history that we can then infer future behaviour from, they will not be identical. Though initial conditions may 

Figure 1| Taken from Gray,C. 2002. Combining the identical reactants in the same conditions can induce propagations in the gels 
which are completely unpredictable. 

Figure 2| Taken from Shinbrot et al., 1992 – the setup and results of an experiment attempting to quantise the rate of separation of 
neighbouring trajectories is a simple chaotic system. a) The set-up for the double pendulum experiment, consisting of two pendulums 
in tandem, linked at the middle and both free to swing, both at the join in the centre and at the hinge at the top. b) Trials run by 
releasing the same identical pendulum from the same height with the most accuracy possible. The bold line represents the expected 
separation between numerical solutions of the system. As illustrated, the 4 trials diverged from the expected calculated trajectories, 
and all different from one another unpredictably.   

a b 
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be seemingly indistinguishable, when rounded to for example 5 decimal places, as the system evolves the 

minute differences in starting conditions will amplify to yield completely different weather. Research into 

weather patterns and predictions conducted by Edward Lorenz in 1963 uncovered this extreme sensitivity to 

starting conditions, providing an explanation for why attempting to forecast long-term weather conditions will 

always result in error, since the system itself and the equations modelling it are inherently unpredictable 

(Encyclopedia.com, 2018).   

 

 

 

 

The Lorenz System  
 

Governing Equations 
 

Edward Lorenz discussed the idea of chaos and initial condition sensitivity whilst studying weather patterns 

(Lorenz, 1963). He described the dynamics of weather systems via 12 ordinary differential equations, with 

12 variables such as the speed of the wind approaching the system from the west (Krishnamurthy, 2015). 

He then came to formulate the below three equations after he noticed that his computer simulated weather 

models looked completely different to each other even though initial conditions were arguably the same. 

Upon realising that the only difference in two runs of a simulation was that the conditions of one were rounded 

to 3 decimal places for one attempt, Lorenz realised that the system he was studying demonstrated a 

significant sensitivity to initial conditions, and this remains a key trait of chaotic systems (Krishnamurthy, 

2015).  

 

The equations illustrated below are simplified non-linear equations for fluid flow and are the 3 equations that 

describe the Lorenz system. The non-linearity is generated by the xy and xz terms:  

Throughout this project, I use the same values for the parameters that Lorenz himself proposed, since it acts 

chaotically with certainty under these parameters. I will use for simulations 𝜎 = 10 , 𝑟 = 28, 𝑏 = 8/3 (Lorenz, 

1963). The parameters of these equations are known as 𝜎 (Prandtl number), 𝑟 (Rayleigh number) and 𝑏.   

 

For completeness, in these equations the x, y and z variables pinpoint the location in phase space where the 

trajectory is located at time t in the x, y and z directions respectively. These three variables all depend on t, 

and thus the xz and xy terms in the equations make the system non-linear.  

 

 

Solving the system numerically:  
  

Having introduced the Lorenz system, I now wish to discuss how I have numerically solved these equations, 

with the non-linearity in the equations lending themselves to be considered via iterative numerical methods.  

 

Forward Euler Method 
 

Firstly, I explored how to numerically solve the Lorenz system of equations using the Forward Euler method. 

This capitalises on the understanding that with a small-time increment, the solution to a differential equation 

can be solved by iteratively using the previous solution, as long as initial conditions are known. It is known 

as the forward Euler method, since the current value for the function is used to generate the next as opposed 
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to the backward Euler method, which uses the current value of the function to implicitly find the previous one 

(Zeltkevic, 1998).  

 

This method can be described by the below equation (Zeltkevic, 1998): 

 

𝑦𝑛+1 = 𝑦𝑛 + ℎ𝑓(𝑦𝑛 , 𝑡𝑛) 
 

If 𝑦 = 𝑓(𝑦, 𝑡), then we can find the next value for y at a point further in time via the equation, the next value 

that y takes after a time step of ℎ will approximately equal that value of y plus the rate of change of y with 

respect to time multiplied by the time step ℎ. The smaller the value of ℎ, the more accurate the method will 

be. 

 

Appreciating that this numerical method does not provide the same accuracy as an analytical solution would, 

it is useful to consider the error of this method. It is perhaps best visualised by considering the above equation 

being the first order truncation of the Taylor Series expansion for 𝑦(𝑡𝑛 + ℎ ). 

𝑦𝑛+1 =  𝑦(𝑡𝑛 + ℎ ) ≅  𝑦(𝑡𝑛) + ℎ 𝑦
′|𝑡𝑛 +  𝑂(ℎ

2)  
 

In the above equation, the 𝑂(ℎ2) represents all terms of order ℎ2 and higher. In this case, using a small 

enough time step, terms of order ℎ2 are small in comparison to terms of magnitude ℎ and thus can be ignored 

without losing too much accuracy for the value of 𝑦𝑛+1. Due to this, the method is known as a first-order 

technique and has a global error, error between the value calculated and the true value, of order ℎ (Zeltkevic, 

1998).  

 

Using this method, I numerically solved the Lorenz system and the individual time series are displayed below, 

alongside the combined series in 3D:  

  

 

  

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

   

Discussing these results, you can see that all three time series are different from one another, note the x and 

y time series being similar, yet the large spikes are slightly different shapes, being more abrupt for y(t). These 

Figure 3 | These plots were generated from a starting point of  (0 , 1, 0), run for 20 seconds and had a time step of 0.004 seconds.  
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plots illustrate the chaotic nature of the Lorenz system, where the graphs show no periodicity, once a state 

has been visited by a system - a certain coordinate for (x , y, z) in phase space -  it will never return to that.  

 

The idea of phase space is something that I will consider in more depth shortly, when I will talk about the 

significance of the 3D plot for these time series solutions of the Lorenz system and what I mean when I say 

a specific ‘state’ of the system.  

 

Runge- Kutta 4th order  
 

Additionally to the Forward Euler Method, I used another numerical method to solve the Lorenz System; this 

being the Runge-Kutta 4th order. Using a similar rationale to the prior method, this again is an iterative 

process to solving non-linear ordinary differential equations, using the current values of x ,y and z to calculate 

their value after a short time step.  

 

 
Following this I solved the same equations with identical initial conditions using a slightly more accurate 

method for solving differential equations numerically – this being the Runge-Kutta 4th order method. As the 

name suggests, the error of this method is lower than that of Euler’s method, with error of order 4. The basis 

of this being extremely similar to that of Euler’s method, but considering 4 values for each of x,y and z and 

taking roughly an average of all of them, with some estimates weighting more heavily than others.  

 

The 𝑦𝑛+1 term is defined recursively by the following formula (Romeo, 2020): 

 

𝑦𝑛+1 =  𝑦𝑛 +
1

6
( 𝑘1 + 2𝑘2 + 2𝑘3 + 𝑘4)ℎ 

 

Note in this case, the 𝑓(𝑦𝑛  , 𝑡𝑛) term has been replaced by 
1

6
( 𝑘1 + 2𝑘2 + 2𝑘3 + 𝑘4). This is a weighted 

average for the rate of change of y with respect to time, the slope of y. Here, values 𝑘2 and 𝑘3 contribute 

slightly more to the average value of the slope.  

 

The values of 𝑘 are defined as follows: 

 

𝑘1 =  𝑓(𝑦𝑛 , 𝑡𝑛)   
 

𝑘2 =  𝑓 (𝑦𝑛 + 
ℎ

2
𝑘1  , 𝑡𝑛 + 

ℎ

2
 )  

 

𝑘3 =  𝑓 (𝑦𝑛 + 
ℎ

2
𝑘2  , 𝑡𝑛 + 

ℎ

2
 )  

 

𝑘4 =  𝑓( 𝑦𝑛 + ℎ𝑘3  , 𝑡𝑛 + ℎ ) 
 

Building on Euler’s methods, 𝑘1 is used as a stepping-stone, providing an approximate value for y to be used 

in a more accurate estimate of y in the later values of 𝑘 (Butcher, 1996).  Using the value of 𝑘1 to then 

evaluate the value of y at the midpoint of the timestep is a way to increase the accuracy of the estimate. The 

relative repetition of this to establish 𝑘2 and 𝑘3 generates a much more accurate value for y comparative to 

Euler’s method alone. In 1985, C. Runge first published a paper introducing such methods, suggesting a 

version of the midpoint rule tailored for ordinary differential equations, and two different arrangements of the 

trapezium rule. These methods were then developed by K. Heun in 1900,  and then W. Kutta in 1901, where 

W. Kutta developed a method for up to fifth order, but arguably more famously introduced the scheme for 4 th 

order which is commonly used today, the one I have described above (Butcher, 1996).  
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From these equations, it can be seen that this method is very similar to that of the forward Euler method, 

but it involves calculating to a better accuracy the rate of change of y with respect to t. The error of this 

method is of order 4 and as the step size is decreased, the error is quartically reduced (Romeo, 2020).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The System and Attractors  
  

Now that I have discussed how the system can be solved, I would firstly like to illustrate simply the chaotic 

nature of the Lorenz system regarding its extreme sensitivity to initial conditions. I have generated the 

below plots under identical conditions, parameter values and overall run time; however, I have changed 

the starting conditions from (0 ,1, 0) for the left hand graph, to (0.0001, 1, 0) for the right hand graph – in 

essence shifting the starting point of the trajectory by 0.0001 in the positive x direction. Considering this 

as a bigger picture; assuming in an experiment we can measure distance we released the chaotic double 

pendulum from with incredible accuracy using a micrometer, where the error is 0.005mm, and we repeat 

the experiment twice, a difference of 0.0001 would not be detected and the repeats would seem identical. 

In a chaotic system, this seeming undetectable error will produce incredible differences in the output as 

the difference is amplified over time.  

 

Consider my below plots, the trajectories begin to diverge after 15 seconds of runtime. Both of the graphs 

below are illustrating how the value of x varies with time over the course of 30 seconds, yet after the 

trajectories have diverged, the behaviour of x is completely different for both systems, even when all other 

parameters have been kept identical. The difference between the initial starting points appears arbitrary 

relative to the accuracy that experiments are generally held to, yet the Lorenz system illustrates that 

chaotic systems are very much sensitive to these changes. This also helps explain the unpredictability of 

Figure 4| Plots resulting from solving the Lorenz system of equations using the Runge-Kutta 4th order method. These look similar 
to the outputs of the forward Euler method, and overall seem to represent the same behaviour, yet they do not illustrate the same 
initial transience – resulting in the 3D plot looking less filled in at the centre compared to the plot for Euler’s method. The algorithm 
has again been run from a starting point of (0, 1, 0) with a step size of 0.004 for 20 seconds. 
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the Belousov—Zhabotinsky reaction, where with every caution taken to identically repeat the experiment, 

the timescale of the oscillations and the patterns produced are never the same.  

 

Now considering the x, y and z variables of the system as a whole; when plotted together they create the 

characteristic butterfly shape resembling the attractor that the system is autonomous with, see fig 6a.  

 

An attractor is generated when a chaotic system is plotted within its phase space, this space is a region 

representing all of possible states of the system (any combination of x, y or z values producing a unique 

3D coordinate). More specifically, Lorenz describes that a coordinate in phase space represents a possible 

instantaneous state of the system (1963). Any point within the phase space can theoretically be used as 

the initial conditions for X0, Y0 and Z0 (Strogatz, 2015). The trajectories will never cross over and two 

lines that begin extremely close together will draw out completely different trajectories as time elapses. 

Since the dynamics are completely aperiodic, the system can never return to a state it has already been 

in and thus the lines will never cross (Lorenz, 1963).          

 

By observing the below plots, it may seem that the trajectories cross, but this is an illusion of the 3D projection 

onto the axis. I have generated a two-dimensional plot of an attractor for the Lorenz system, fig 6b, from 

simultaneously plotting six trajectories in a different colour, all starting at a randomly selected point in phase 

space. This maybe illustrates better that these trajectories do indeed never cross, they just seem to since 

they move behind each other but at different depths in 3D. 

The attractor contains a ‘minimal attracting set’, containing the minimum number of trajectories required to 

attract any arbitrarily close trajectories (Il’yashenko, 1991). This attracting set means than any trajectory that 

starts sufficiently close to the attractor will eventually end up on it and remain on it from then on. So returning 

to the point that has been mentioned where any location within phase space can be used as the initial 

conditions to solve the equations for, regardless of starting point, the trajectories will inevitably end up in this 

attractor and then will never diverge out of it. Each trajectory in the system can potentially fluctuate and has 

the ability to do so as time progresses, yet the attractor reveals a more predictable long-term form 

(Encyclopedia.com, 2018). The chaos that the trajectories display, in this case the unpredictability of initial 

conditions in the real world leading to seeming random weather patterns in the long term, has finite 

boundaries; the trajectory cannot randomly take any value since it is constrained to the limits of the non-linear 

equations. However, even with these finite boundaries, the possible evolutions of the system are infinite 

within this; giving rise to order without predictability, where the system generating the attractor generates 

many configurations which are extremely similar but never the same (Encyclopedia.com, 2018).  

 

  

Figure 5| a) Illustrates the time series x(t) for initial conditions (0, 1, 0). b) Illustrates the time series x(t) for the initial conditions 

(0.0001, 1, 0). As you can see, the initial behaviour is very similar, but as the noise is amplified throughout the system the dynamics 

become completely different, observe around the t= 15 point the time series. 
  

a) b) 

https://aip.scitation.org/author/Il%27yashenko%2C+Ju+S
https://aip.scitation.org/author/Il%27yashenko%2C+Ju+S
https://aip.scitation.org/author/Il%27yashenko%2C+Ju+S
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In contrast to conservative systems, the system contracts volume in phase space and is dissipative (Lorenz, 

1963). It is for this reason that the flow of all of the solutions can be represented as trajectories forming an 

attractor. Within the attractor, arbitrarily close trajectories diverge exponentially fast from one another, 

exhibiting the typical characteristic of chaos, with trajectories beginning close together soon behaving 

extremely differently (Lorenz, 1963).   

The Lorenz attractor is known as a strange attractor, since it displays both sensitivity to initial conditions and 

the specific position of the system is never fully known, since two neighbouring trajectories diverge 

exponentially quickly from each other and never intersect, even though they have once been arbitrarily close 

to each other (Strogatz, 2015).   

  

 

 

The Fixed Points of the Lorenz System 
 

Looking at the attractors in fig 6, it can be seen that there are fixed points in the system, for example the 

spirals in the wings of the ‘butterfly’. Now we will look at these in more detail, the equations describing the 

attractor included below for reference: 

 

 

 

 

 

Firstly, a fixed point is defined to be a point in which the values for 
𝑑𝑥

𝑑𝑡
 ,
𝑑𝑦

𝑑𝑡
 ,
𝑑𝑧

𝑑𝑡
 are 0. In this section I will use 

the notation x’ to refer to 
𝑑𝑥

𝑑𝑡
 and similarly for y’ and z’. To calculate the fixed points of the Lorenz system, we 

can set (x’ ,y’, z’) = 0 and solve for this. This is done in detail in appendix F.  

 

 

 

 

Figure 6 | a) Taken from Wu and Shen, 2009. The chaotic attractor of the Lorenz system. b) An attractor that I have generated by 

plotting multiple trajectories, randomly selecting a point in the phase space and beginning the simulation. Each of x, y, z in the 
starting coordinate can take a randomly generated value between 0 and 2. Each trajectory has its own colour to illustrate the nature 

of the attractor. Regardless of the starting point in phase space, the trajectory soon becomes similar to the others. I have plotted 

this in 2D since it resembles the butterfly attractor which is analogous with chaos. The attractor has been generated by solving the 

Lorenz system numerically via the Forward Euler method for 20 seconds of run time and a step size of 0.001.  

a) b) 
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It can be shown that the fixed points of the Lorenz system are as follows: 

𝑷𝟏 = (0, 0, 0),     𝑷𝟐 = (√𝑏(𝑟 − 1) , √𝑏(𝑟 − 1) , 𝑟 − 1),     𝑷𝟑 = (−√𝑏(𝑟 − 1) , −√𝑏(𝑟 − 1) , 𝑟 − 1) 

 

Where 𝑷𝟏 exists for all values of 𝑟, and 𝑷𝟐 , 𝑷𝟑 exist for 𝑟 ≥ 1 – where they come into existence at 𝑟 = 1 but 

are coalesced with the origin (Strogatz, 2015).  

 

The points (±√𝑏(𝑟 − 1)  , ±√𝑏(𝑟 − 1)  , 𝑟 − 1) Lorenz in his 1963 paper called C+ and C-. As 𝑟 tends to 1 

from above, these fixed points will coalesce with the origin via a pitchfork bifurcation (Strogatz, 2015). This 

bifurcation will be illustrated shortly. 

 

Stability of the fixed points  

 

To gain a better understanding of the Lorenz system, it will now be useful to discuss not only the existence 

of these points, but their nature and stability. A fixed point can be classified as one of two categories, stable 

or unstable (Strogatz, 2015). The point being stable meaning a trajectory starting with initial conditions near 

the point will remain near the point from then on, an unstable point meaning a trajectory starting near this 

point will diverge from it. The classification of each point can be done via linear stability analysis, where any 

non-linear terms in the equations are removed and only the linear elements considered, so in this case the 

equations to look at are now: 

 

 

Considering this definition of a stable fixed point, it follows that if we add a small increment 𝜀 onto the fixed 

point (0,0,0), such that it becomes (0+ 𝜀, 0+ 𝜀, 0+ 𝜀) for small 𝜀 – this trajectory should now remain close to 

(0, 0, 0) as time evolves and not diverge from it. We can determine by linear stability analysis whether this 

point is stable or not and whether this trajectory returns to the origin after the introduction of a small 

perturbation.  

 

Similarly to the derivation of the location of the fixed points, the key results regarding them will be discussed 

here and the main calculations of them are included in appendix F and G.  

 

For 𝒓 < 1 and the origin 

Considering the linearised equations, the z(t) component at the origin can be considered stable since z’ is 

decoupled so z(t) will tend to zero. Representing the linearised system including the small perturbations as 

the below matrix:  

(
𝜂′

𝜗′
) =  (

𝜕𝑓

𝜕𝑥

𝜕𝑓

𝜕𝑦

𝜕𝑔

𝜕𝑥

𝜕𝑔

𝜕𝑦

)(
𝜂
𝜗
) with 𝜂(𝑡) = 𝑥(𝑡) − 𝑥°     and   𝜗(𝑡) = 𝑦(𝑡) − 𝑦°     

We can note that the Jacobian of the vector field at the fixed point in the x,y plane at (0,0,0) is present in 

the above equation.  

 

From the literature, it has been identified that certain quantities of the Jacobian matrix of a system can give 

an indication of the type of fixed point that is being represented. In this case for a 2-dimensional linear 

stability analysis, and as discussed in detail in the appendices, the trace, determinant and the quantity 

Τrace2 − 4Det(𝐉) will help determine the nature of the fixed point (0,0,0) (Strogatz, 2015).   

 

Noting that 𝑓(𝑥, 𝑦) = 𝑥′ and 𝑔(𝑥, 𝑦) = 𝑦′, the Jacobian matrix is given by:  

𝑱 =  (
−𝜎 𝜎
𝑟 −1

) 

 

Since the trace of this matrix is negative, but the determinant and the value of Τrace2 − 4Det(𝐉) are both 

positive, we can conclude that the origin is a stable node for 𝑟 < 1 (Strogatz, 2015).  
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For 𝒓 >1 and the origin 

If the determinant of J  is negative then we can immediately conclude that the point is a saddle point, stable 

in 2 directions and unstable in the third. For 𝑟 >1, this is the case and hence the origin is a saddle for 𝑟 >1.  

 

For 𝒓 > 1 and C+ / C- 

 

When 𝑟 > 1, we also have the existence of the symmetrical pair of fixed points at C+ and C-. Conducting an 

analysis similar to that of the calculation in 2D for the fixed point at the origin, we can again derive the 

Jacobian matrix for the 3-dimensional system at the fixed points C+ and C-. Also by a method reflecting the 

2-dimensional linear stability analysis, the Jacobian matrix can assist us with the classification of these fixed 

points as stable or unstable. In this case however, it is the eigenvalues of this matrix that can help, with 

negative real parts of the eigenvalues indicating stability, and positive real parts of the eigenvalues indicating 

instability (Clack, 2006).  

 

We can derive the characteristic equation describing the eigenvalues from the Jacobian matrix for the 3-

dimensional system and arrive at the below: 

𝜆3 + 𝜆2(1 + 𝑏 + 𝜎) + 𝜆𝑏(𝑟 + 𝜎) + 2𝜎𝑏(𝑟 − 1) = 0 

 

 

Here I will deviate from the literature in the derivation of the values of 𝑟 for which the fixed points are stable. 

Many sources calculate the value of 𝑟 at which the system becomes unstable via the use of the below result: 

𝑅ℎ =
𝜎(𝜎 + 𝑏 + 3)

𝜎 − 𝑏 − 1
 

 

So, using the predefined values of 𝜎 = 10 and 𝑏 = 8/3 for this investigation, we arrive at a value of 𝑅ℎ =
470

19
= 27.74 (2𝑑𝑝). However, to stick to a method similar to the 2-dimensional stability analysis, I will now 

attempt to use the characteristic equation to find the eigenvalues and comment on the stability that way.  

 
I highlight here that there is a lack of evidence in the literature regarding directly solving for the eigenvalues 

for the Lorenz system. However, to stick to the theme of this investigation – and utilise numerical methods – 

I believe this is an appropriate way to assess the stability of the fixed points and provide a refreshing way to 

calculate it. I solved the characteristic equation numerically using code included in appendix G, and plotted 

the real parts of the eigenvalues relating to C+ (since C- is identical just has an opposite signed imaginary 

part). As illustrated below, this numerical method pinpoints the value at which the eigenvalues become 

positive and hence the fixed points are stable up until 𝑟 = 24.7 – agreeing with the result using the prescribed 

formulas found in the literature.  

 

Hence, the fixed points C+ and C- are stable for 1 < 𝑟 < 24.74 and unstable for 𝑟 > 24.74. 

Figure 7| Numerically determining the value where the C+ and C- become unstable. The literature indicates that these 
points become unstable when the eigenvalues of the Jacobian of the vector field become positive. Here it has been 
pinpointed where these solutions become positive, and this agrees with the literature which obtains this value 
analytically.  
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The three fixed points can be summarised by the below bifurcation diagram, illustrating both when the points 

come into existence and in what regions that are stable and unstable.  

 

The Lorenz System and Parameter Influence 
 

I emphasise again the need for appropriate parameters since not all systems that display chaotic behaviour 

do so for every value of all the parameters it is defined by, for example as discussed above no attractor is 

present for the Lorenz system for 𝑟 < 1. I illustrate this with the time series that I have inserted below, which 

clearly not demonstrating unpredictable behaviour as time progresses. 

 

The below plots are the solutions to the Lorenz system of equations. They show the values of x ,y, z (which 

pinpoint the location of the trajectory in phase space) for a time between 0 and 25 seconds. In these plots 

the only edit made has been to the Rayleigh number 𝑟, being changed to 10 instead of 28 in the simulations. 

Figure 9 | Time series for the time series x(t), y(t) and z(t) solutions to the Lorenz system of non- linear differential equations using 

the same parameters except a Rayleigh number of 10 instead of 28. 

  

 

Figure 8| Taken from Strogatz, 2015. This diagram exemplifies the three fixed points discussed above. The bold lines illustrate where 
the fixed points are stable, and dotted lines show when they become unstable. In this case, rH =24.74. This value is true for both C+ 
and C-. The point at which the two symmetric fixed points coalesce with the origin is indicated at a value of r = 1, this is the pitchfork 
bifurcation since the origin becomes an unstable saddle for r>1 and the two symmetric fixed points emerge in the shape of a pitchfork. 
The two dotted arcs located at r= rh show where the C+ and C- fixed points become unstable.  
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The series illustrate the lack of chaos exhibited by the system using this different parameter value. The 

system behaves in a more predictable manner, where any behaviour dampens out by 15 seconds, in terms 

of phase space, a particle on that trajectory reaches the coordinates approximately (5,5,9) and remains there 

thereafter. 

 
 

The origin as a globally stable fixed point for 𝑟 <1 – the Lyapunov exponent 
 

The Lyapunov exponent can be used to illustrate a chaotic system and its sensitivity to initial conditions. In 

the above example, it has been exemplified how changing the parameters of the Lorenz system can inhibit it 

displaying chaos. I will now describe with certainty how I know that the system cannot act chaotically for a 

value for 𝑟 less than one. This will agree with the fixed point analysis that the origin is a stable node for 𝑟 < 1, 

where any trajectory will not diverge from the origin.  

 

Whilst studying the literature, Shinbrot and colleagues’ work on the double pendulum highlighted a potential 

indicator of chaos to be the sign of the Lyapunov exponent value of the system (1992). Lyapunov exponents 

are quantity of a dynamical system; such as the Lorenz system that is currently being considered. The values 

that the exponents take characterise some quantities of the system; with negative values indicating the 

system is dissipative, zero values indicating conservative systems and positive ones indicating chaos, the 

latter positive values only indicating chaos if the dynamical system has an attractor for its behaviour. In this 

case, it has already been discussed that the Lorenz system has an attractor, so if the value of a Lyapunov 

exponent can be found to be positive, then they system is displaying chaos.  

 

If we plotted the distance between two neighbouring trajectories as 𝛿(𝑡) on the vertical axis and time on the 

horizontal, the Lyapunov exponent can be considered to be the slope of this line. Hence the exponent can 

be considered a measure of the divergence between arbitrarily close trajectories, with a positive value 

meaning divergence and thus chaos (Strogatz, 2015).  

 

A dynamical system also does not only have one Lyapunov exponent, instead it has one for every dimension. 

In this case, the phase space of the Lorenz system is 3 dimensional and thus there are 3 Lyapunov exponents 

associated with the system (Strogatz, 2015). One is needed to be positive to see chaos.  

 

I will plot how the Lyapunov exponents of the system change with increasing 𝑟 as evidence as to why not 

every value for the Lorenz parameters will facilitate chaos. We know that a value of 𝑟 < 1 will not lead to 

chaos from the stability analysis, and this is exemplified by the Lyapunov Exponent plotted. Where a value 

of rho less than one leads to negative values for all three Lyapunov exponents and this means that locally to 

that fixed point (0,0,0) no chaos can be observed.  

Figure 10| The values of the three Lyapunov exponents of the Lorenz system change over increasing values of 𝑟. Only one of the 
three values is required to be positive in order to facilitate chaos, the above exemplifies that a positive exponent value is only achieved 
for 𝑟 > 1. The plot was generated by calculating the value of the Lyapunov exponents for a range of increasing values of 𝑟, there are 

three Lyapunov exponents for every iteration since the Lorenz system has three dimensions.  



 

 18 

  

I have also illustrated how the fixed point (0,0,0) acts as a sink for values of rho less than one, fig 11, 

visualising the implications of what we just calculated regarding the Lyapunov exponents. All solutions that 

have started arbitrarily close to (0,0,0), in this case I have started off 50 trajectories at a random set of (x,y,z) 

coordinates, are drawn to the origin as seen and no chaos is exhibited. Contrastingly, any value of 𝑟 giving 

a positive Lyapunov exponent will produce the analogous attractor of the Lorenz system, fig 6b.  

 

The origin is globally stable for 𝑟 < 1, meaning every trajectory will approach the origin as time tends to 

infinity.  

 

 

A note on noise induced chaos 
 

Reflecting on how the values for the Lyapunov exponent around the fixed point (0, 0, 0) suggested that no 

chaos can be exhibited by the system with a value for rho less than one, I thought it would be interesting to 

briefly investigate how adding noise influences this dynamic. After confirming with the literature that noise 

can induce chaotic behaviour, I sought to exemplify that in the Lorenz system (Ellner, 2005). This 

phenomenon is something that could be explored further and in more depth in the future, noting Ellner and 

colleagues’ comments that noise can have large-scale impacts on non-linear systems which are 

disproportionate to the amplitude of the noise, in a similar way to how tiny perturbations in initial conditions 

can give drastically different time series solutions to the Lorenz equations (2005).   

 

 

 

 

 

 

 

Figure 11| All 40 trajectories, regardless of their initial starting positions in phase space end up at the origin. For a value of 𝑟 < 1, 
in this case 0.9, using the same time step and the RK4 method for solving ordinary differential equations, it is clear that the origin 
is acting as a sink and is globally stable for 𝑟 < 1.  

Figure 12| Adding white noise of amplitude 0.01 to the non-chaotic Lorenz system for 𝑟 = 0.9 achieved a chaotic time series.  
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Introducing Brownian Motion:   
 

Having modelled purely the un-interfered chaotic dynamics of the Lorenz system and having an appreciation 

for the initial condition sensitivity, we can now build up to consider the effects of adding noise to the system. 

I will first introduce the concept of adding noise to a differential equation by considering Brownian Motion, 

this motion being described by a stochastic differential equation – a differential equation incorporating a 

randomly generated term.  

 

The discovery and evolution of Brownian Motion is described by Smith and Raghav as ‘a collective, even if 

disjointed, scientific enterprise’ (2022). In 1827 Robert Brown evidenced that pollen grains suspended in 

water were always in some form of random motion, moving as if they were vibrating (Cohen, 2016). Using a 

microscope, he then went on to observe this seemingly complex, non-stop motion in a range of materials, 

from animal tissue to glass and rocks. Since this motion occurred in both liquid and solid states (for example 

both in the pollen example and in a sheet of glass), it was hypothesised that the explanation for these 

observations was related to kinetics; yet no kinetic explanation was established for Brownian motion in the 

nineteenth century (Smith and Raghav, 2022).  

Other possible explanations for this persistent random granular motion observed by Robert Brown included 

surface tension, osmosis and electrical effects; and these proposals were used by many, such as Conybeare, 

to counter the kinetic explanation. All of these ideas were overwhelmingly lacking in evidence, and doubts 

around the kinetic theory of heat throughout the nineteenth century influenced the lack of progression to an 

explanation for Brownian motion (Smith and Raghav, 2022). Finally, Jean Perrin established that Brownian 

motion was of thermal molecular origin upon the invention of the ultramicroscope, agreeing with Einstein’s 

1905 paper regarding small particles suspended within a stationary liquid. The motion observed by Brown 

was deemed to be due to the action of the water molecules colliding with the suspended particles (Smith and 

Raghav, 2022).  

 

Notice in the above illustration, the pollen grain doesn’t exhibit an overall net movement in any direction, 

since the force it is under is acting equally in all directions and has a mean of zero. I will now model this 

Brownian motion below, the random collisions with water molecules being represented as noise added to a 

differential equation. The properties of this force, such as it having zero mean, will be considered further now 

as I model Brownian motion through the use of the Langevin equation. 

 

 

 

 

 

Figure 13| Taken from Cesbron,2017. An illustration of the random motion of a pollen grain observed for 1000 steps. This motion is 
what Brown would have observed as the pollen grain vibrating. After many years of searching for an explanation for this behaviour, 
and kinetic theory of heat being investigated more, the motion was deemed to be of thermal molecular origin at the beginning of the 
twentieth century (Smith and Raghav, 2022).    
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Langevin Equation 
 

Following the establishment in 1906 that the erotic motion of granules suspended in water is due to the 

random movement of the atoms in the fluid, Langevin then went on to show in 1908 how to represent the 

interaction between the particle and the fluid (Pomeau and Piasecki, 2017). Significantly, Langevin split the 

forces acting upon the suspended particle into two, one regarding the viscosity of the fluid, and the other 

representing the random force of the molecules colliding with the Brownian particle (Pomeau and Piasecki, 

2017). His equation is considered Newtons second law for Brownian motion and the Langevin equation is 

as follows:  
 

 

 

In this equation, 𝑚 represents the mass of the suspended particle, with radius 𝛼, position 𝑥(𝑡), velocity 
𝑑𝑥

𝑑𝑡
, 

and fluid viscosity 𝜂. Thus the 𝑚
𝑑2𝑥

𝑑𝑡2
 term represents the total force acting on the Brownian particle at the 

instantaneous time t. The coefficient for velocity in the equation represents the friction that particle will 

experience whilst moving through the liquid, where the exact expression for this coefficient is a result of 

Stokes law.  

 

Considering the right-hand term of the equation, this represents the random force that the particle 

experiences as a result of the collisions occurring between it and the fluid atoms. The discussed random 

force is the term which makes the Langevin equation a stochastic differential equation and gives the effect 

of background noise (Kuroiwa and Miyazaki, 2014).   

 

Notably, since the action of the force is random, it is impossible to replicate the motion of the particle, however 

the statistical properties of the force can be assumed if the system is in a statistically steady state, so can be 

used to simulate a variable with the same statistical properties. These properties are that the force has zero-

mean, Fb (t1 ) – Fb(t2 )  is normally distributed and Fb (t1 ) and Fb(t2 ) are uncorrelated.  The forces being 

uncorrelated is a result of the frequency of the collisions between the particle and the atoms in the liquid, with 

approximately 107 collisions occurring in 0.0001 seconds. If the force Fb (t ) is a result of the collisions 

happening instantaneously with the particle, in a small increment of time later, the particle will be being hit by 

a completely different set of liquid atoms, so the force will be completely different.  

 

Since this is a differential equation, again to solve it I will implement an iterative numerical method. However, 

to account for the stochastic term in the Langevin equation I will use a slightly modified algorithm.  

 

 

Euler – Marayama method for the Langevin Equation  
 

In a similar way to the derivation of the Forward Euler method for solving ordinary differential equations, this 

method is also generated via the truncation of a Taylor series (Bayram et al., 2018). Generating a stochastic 

expansion up to order 1 yields the below equation which I have them implemented in my project: 
 

𝑋(𝑡𝑖+1) = 𝑋(𝑡𝑖) + 𝑓(𝑋(𝑡𝑖))∆𝑡 + 𝑔(𝑋(𝑡𝑖))∆𝑊𝑖  
 

Where 𝑋(𝑡0) = 𝑋0, (Bayram et al., 2018).  

 

I will also plot the probability distribution for the time series resulting from this solution to the Langevin 

equation, this will illustrate the properties of the random force Fb (t ). To generate this stochastic noise to 
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incorporate into the Langevin equation as Fb (t ), a Weiner process was used since this generates a random 

array of values with the same properties required.  

 

To get a snapshot of 𝑋(𝑡) and to clearly visualise the random motion that the stochastic term is generating, 

the solution has only been plotted for an overall time length of 3 seconds. In order to confirm that the noise 

that has been added has a true mean of zero and is gaussian in nature, I let the time series evolve for a long 

period of time (1000 seconds with a step of 0.01) to plot the probability distribution.  

 

Observing the histogram below, as expected, the probability density function for this time series is normally 

distributed with mean zero, as the noise added was defined to have these properties.  

  

  

  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  

  
Figure 14|The output from solving the Langevin equation for a duration of 3 seconds. The value of x(t) varies immensely over the 

course of the three seconds, resembling what the time series would look like if the location of a pollen grain suspended in water were 

to be observed. Importantly, the random nature of the noise term mimicking the random nature of the interactions between the liquid 

atoms and the suspended granule means that the time series is unique to the certain random values of noise that have been generated 

for this simulation. If this were to be run again, a different output would be seen, but would have the same statistical properties such 

as mean.  

Figure 15| The probability density function and histogram for the time series output from solving the Langevin equation, it has 

a mean at 0 and is normally distributed as expected given that gaussian noise was added. The simulation was run for 100000 

seconds in order to be representative of the properties of the random noise term, these being zero mean and normally 

distributed.   
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The histograms of the Lorenz system time series have also been plotted below and are very different to the 

normally distributed probability density function of the Langevin equation solution. 

Contrastingly to the PDF of the Langevin equation, it is clear from all three plots that the values in the time 

series solutions are not normally distributed. There is also a stark difference between fig 16 a,b  and fig 16c, 

with the latter being unimodal in comparison. In the context of the Lorenz system, these differences illustrate 

the nature of the time series solutions, with x(t) and y(t) oscillating both above and below zero, yielding two 

modes and an almost symmetrical histogram about 0, as illustrated in the time series of fig 4, whereas the 

z value is strictly positive so has a single mode.  

 

Overall the rationale behind this section was to illustrate the nature of the noise that I will be adding to the 

Lorenz system, as well as introducing the iterative numerical method that I will use to solve the Lorenz system 

once I have added noise to it.  

 

 

Introducing noise into the system 
 

Now that I have discussed how adding random noise to a differential equation can influence its solution, and 

having exemplified the nature of this noise, I will now add noise to the previously solved Lorenz system and 

see how this affects it. In order to see the effects of this noise, I will add white noise to the Lorenz system 

and then solve it to generate the time series for x, y and z once more. This noise will be added the same way 

as I have demonstrated in the Langevin equation, with mean zero, normally distributed and force at two 

different time points uncorrelated.  

 

I will first illustrate the effects at face value of adding this noise, observing what the time series and 3-

dimensional plots look like for this system with added noise. I will then take this a step further by analysing 

the power spectral densities (PSD) of the original Lorenz system and the one with added noise.  

 

 

 

Figure 16| The histograms of the time series solutions to the Lorenz system reveal the distributions of the values as the series 
evolves. These plots have been generated from a runtime of 100000 seconds with a time step 0.01.   

A B 

C 
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A brief look at the effects of white noise on the Lorenz system 
 

Initially, I have added white noise to the Lorenz system and solved it to illustrate the effects on the behaviour 

of the system as a whole. I have added noise with a mean of zero, variance of 1 and an amplitude of 3.  

 

However, just observing the graph isn’t sufficient to infer the effects that the noise has had on the properties 

of the system – and this is where the notion of power spectral densities will become useful. Upon the end of 

this section, the effects of noise on the Lorenz system and its individual x, y and z time series will have been 

analysed in better detail.  

 

Considering Power Spectral Densities 
 

Having seen the time series for the non-interfered signal in the time domain, we can assume that it can be 

plotted in the frequency domain using a Fourier transform, since the signal is a composition of waves at 

varying frequencies. Since this signal is generated by a chaotic system, it will obviously be aperiodic and 

therefore I will use a Fast Fourier Transform (FFT).  

 

Interestingly as a side note regarding aperiodicity: the aperiodicity of the system is discussed by Lorenz in 

his original paper, where he concludes by considering the question of whether chaos theory is applicable to 

the atmosphere as a whole, since if the atmosphere could be proved to be periodic in comparison, then long 

term weather predictions could be achieved (1963). If the atmosphere can be proven periodic by integrating 

for a long enough time and discovering that is has been in the same state twice, then in theory he suggests 

that the time scale of the weather repeats could be evaluated (Lorenz, 1963).  

 

The FFT is an algorithm by which the discrete time Fourier transform of a signal can be calculated. This is 

used for aperiodic signals like the time series that we have been considering. Additionally, a PSD will be 

plotted instead of the simple power spectrum that the FFT returns. The use of this is that the PSD is 

normalised to provide a value of power per unit frequency, whereas a power spectrum reveals solely the 

amplitude of the wave at that frequency that is contributing to the signal. This means that the FFT is useful 

in scenarios where there are a few dominant frequencies in the signal, and PSDs are useful for random 

aperiodic signals which are generated from a wide variety of frequency components.  

 

I will first rationalise the use of this method through the use of a much simpler example. I will transform the 

below cosine function into its power spectral density and exemplify the power in this technique in 

decomposing a signal into its component frequencies. This will both provide a more solid explanation for 

  

    

Figure 17| The 3D plot of the Lorenz system solved with added noise illustrates that the noise causes the attractor to become 
distorted. The overall properties of the system still seem to be present, with the shape of the graph remaining comparable to the 
previous plots without any noise.  
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exactly what is being calculated when the PSD is computed, and also ensure that the code used to plot the 

PSD is correct, since the expected PSD from this cosine function is well known.  

 

 

Plotting the PSD for this function should result in a single peak at a frequency of 10Hz. The y- axis units 

representing power per unit frequency.  

 

 

Hopefully from the above plot it is clear to see the value of the PSD in breaking down a signal. Adding white 

noise to the cosine function will disturb what the oscillations look like, yet the appearance of the PSD should 

remain relatively unchanged, since most of the power in the signal is still being generated at the 10Hz 

frequency, the noise being at a more minimal level across all frequencies.  

 

Plotted below is the PSD of the original cosine wave but with white noise of mean 0, variance 0.01 at 

amplitude of 1, fig 20 b.  A key point to emphasise from this exercise is that observing the noisy time series 

alone cannot inform us much about the nature of the effects of the noise on the signal, only qualitatively that 

it is having an effect. Plotting the PSD of the signal recovers the background influence over the overall 

observed time series.  Hence, the uses of this PSD extend into our current discussion of the Lorenz System, 

irrespective of the fact that the time series associated with this are much more complex than the simple 

cosine wave just discussed.  

 

Figure 18| A cosine wave oscillating at a frequency of 10Hz. The aim of the PSD will be to illustrate this with a spike on the x-axis 
at a frequency of 10, demonstrating that all of the energy in the signal is at 10Hz.  

Figure 19| The power spectral density resulting from a cosine wave with a frequency solely at 10Hz. The single peak at a frequency 
of 10 represents that all the power in the signal is being generated from a wave oscillating at a frequency of 10 Hz.  
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Converting the time series of the system into the frequency domain is an invaluable exercise when attempting 

to quantise the effects of adding noise into this dynamical system.  

 

Power Spectral Densities of the Lorenz System 
 

The process in which the following PSDs have been generated is homologous to the method used for the 

simple example above. Once more, the noise free PSD will be considered, and then the PSD with added 

noise. The aim of this section however is different, I am no longer solely identifying the frequency make-up 

of the signal, but rather attempting to quantify the effects of added white noise – and seeking the point at 

which the noise dominates the signal.  

 

A useful plot for this analysis is the below, a visualisation of the PSD for pure white noise. The below spectrum 

is a plot of white noise without any other variables.   

 

 

PSDs without noise 
 

Below are the plots for the x, y and z time series of the Lorenz system without the addition of any white noise. 

I have additionally fitted a least squares regression to the steepest part of the decay of the power, which will 

be used shortly to characterise the nature of the decay in frequency energy content.  

Figure 20| a) How the addition of white noise affects the appearance of the cosine wave, the general form of the wave can still be 
seen, yet it is more difficult to determine which frequencies are contributing the time series. The plot illustrates how now, not all of 
the power in the series is being generated at the 10Hz level, there are other frequencies now incorporated that are distorting the 
appearance of the wave. b) Plotting the PSD reveals how the noisy cosine signal is being generated and what frequencies contribute 
to this. It is obvious that the main contributor is still the oscillations at 10Hz, with all of the noise at a wide range of frequencies at 
very low power per unit frequency.  

a) b) 

Figure 21| The power within the noise is evenly distributed over all of the frequencies, with no decay. This PSD was generated from 
a white noise time series with normally distributed noise of zero mean and variance 0.01.   
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The lines are plotted through the steepest part of the decline to capture most accurately the true value of the 

slope, avoiding the behaviour at extremely low frequency, between the values of frequency of 𝑒0 and 𝑒1 , 
characterising the decay.  

 

   
These plots have been generated by solving the Lorenz system using the RK4 numerical method for solving 

differential equations. This method was chosen over the forward Euler method because its error is much 

smaller than that of Euler’s scheme. Since the aim of plotting these graphs is to quantify how the signal 

decays over frequency, then the more accurate iterative method was deemed the most appropriate.  

 

Importantly for this exercise, to observe how the power spectrum decays over frequency, it is essential to 

conclude that the system is in a statistically steady state before taking its power spectrum. This is to ensure 

that the statistical properties, for example the mean and variance of the time series that this plot is 

representing, are constant. Since, if they are not then the simulation has not been run for long enough and 

is still evolving. To ascertain whether the Lorenz system was in a statistically steady state upon 

decomposition into a PSD, the simulations were run for increasing overall time intervals until the mean and 

variance of the first half of the time series was equal to the second half of the series. Thus, in the above 

graphs and in any further calculations on these PSDs, the time series has been run for 1000 seconds to 

achieve an overall unchanging distribution; the mean and variance were used as indicators that the system 

is in a statistically steady state. From this, we can be sure that the PSD generated is reflected of the 

behaviour of the system and the conclusions I make about this PSD can therefore be made with confidence.  

Additionally, at least a decade of data has been used to fit the slope (in this case frequency values of between 

0Hz and at least 100Hz) to ensure accuracy. 

 

The PSDs have been plotted on logged axes for two reasons: 

•  The frequencies measured are between 0.001Hz and 1000Hz, with the decay of the power mostly occurring 

between 0.001Hz and around 10Hz. Plotting this on the usual axes results in a region of steep decline 

Figure 22| The x, y and z time series’ PSDs all follow a power law relating PSD to frequency, since the plots on logged axes result 
in a linear relationship in a part of the graph. The values for the slopes will be commented on shortly in regard to characterising the 
nature by which the power decays.  

-7.054 -6.241 

-4.408 
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followed by a relatively flat line for the rest of the frequencies, this plot would reveal nothing to us about the 

nature of the steep decay at low frequency, since it cannot be seen on larger axes and will all be concentrated 

on the left-hand side of the graph. 

 

• In an attempt to quantify the nature of the decay of the signal, I have fitted a line of best fit. The decay of 

the signal is known to follow a power law, so plotting on logged axes enables simple calculation of the 

exponent value since the log turns it into a linear relationship. This is exemplified in the below derivation, 

where S represents the Power Spectral Density,  𝜔 represents frequency, A is an arbitrary constant and 𝛽 

determines the rate of decay. 

 

𝑆 ∝  
1

𝜔𝛽
 

 

𝑆 = 𝐴𝜔−𝛽 

 

log(𝑆) = log (𝐴𝜔−𝛽) 
 

log(𝑆) = log(𝐴) + log (𝜔−𝛽) 
 

log(𝑆) = log(𝐴) − 𝛽log (𝜔) 
 
It is clear from the above that the constant A is introduced as a constant of proportionality, it also reveals that 

the value of 𝛽 more specifically determines the slope of the decay when the power law relationship between 

frequency and PSD is plotted on logged axes.  

 

When plotted on these axes, we can calculate the slope of the spectrum to reveal some of the nature of the 

type of decay that we are seeing. In the case of the Lorenz system and the plots for the x, y, and z time 

series spectral densities, the aim here is to characterise the rate of decay that we can observe by comparing 

it to how certain colours of noise decay.   

 

Colours of noise 

 

Assuming that coloured noise follows the power law  𝑆 = 𝐴𝜔−𝛽, the value of 𝛽 characterises the type of noise 

that the PSD has been generated from. Even though the Lorenz systems plotted has no additive noise 

incorporated into it, the way in which the logged PSD vs frequency plot decays resembles the signal of 

coloured noise, so the aim here is to describe in what way the power decays over frequency.  

 
Table 1| How the colour of noise is determined by the magnitude of the slope of its PSD when plotted on logged axes. The value of 𝛽 = 0 means 
there is no decay in power per unit frequency and the noise does not decay over frequency – this is white noise and this is the nature of the 
noise that will shortly be incorporated into the Lorenz system. Values for 𝛽 taken from Woolf, 2023.  

Value of 𝜷 Colour of noise 

0 White 

1 Pink 

2 Brown 

-1 Blue 

-2 Purple 

𝜷 < -2 Black noise 

 

 

Noise being classified as various colours is similar to how certain colours of light are generated by specific 

frequencies; for example white light contains all frequencies of the visible spectrum, and white noise is 

generated by combining all audial frequencies and is at the same power over all of them. Considering the 

slope of the decay for the x, y and z solutions, these can be classified as similar to black noise since they 

are all smaller than -4 (Woolf, 2023). This is referring to the fact that, similar to black light which is a relative 
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lack of any signal in the visible spectrum, black noise consists of a very small amount of power at a low 

frequency which decays very quickly – almost a visual representation of silence.  

 

 

Interpreting these results: 

 
Plotting the decay of the signal on logged axis has helped to reveal both the nature of how the energy decays 

as frequency increases, but also clearly quantises the amount of decay that occurs, with the highest energies 

being roughly 10 orders of magnitude stronger than those at higher frequency. I now wish to explain this in 

the context of the Lorenz System.  

 

In these plots, a value for the maximum frequency measured was 1000Hz, and the simulations run for 1000 

seconds with a time step of 0.001. Hence the lowest frequency wave that could be measured was 0.001Hz. 

The largest values for the PSD being at low frequency is illustrating that the energy is mostly contained in 

these lower frequencies. Integrating the area under the PSD between these low frequencies reveals the 

energy contained between them:  

 

This steep decay of power as frequency is increased is a visual manifestation of the differing timescales that 

are occurring simultaneously in the Lorenz system. This has been illustrated below for clarity.  

 

In the system, at any instantaneous point in time, there will be both trajectories moving around the edge of 

the ‘butterfly’, illustrated with the orange line, as well as some trajectories moving solely around one wing. 

Unlike in the simple cosine example where there was energy being injected into the system at a certain 

frequency, the different timescales within this system are these representations of the frequency of energy. 

Figure 23| The area under the plot is indicative of the energy contained in certain frequency ranges. The orange region has area of  
magnitude 19.856 comparative to the pink region that has area of magnitude 10.535. This supports what has previously been said 
about the lower frequencies being of higher energy.  

Figure 24| The initial starting point within phase space, and its proximity to a fixed point influences the trajectory that a particle would 
be on at any specific instantaneous time point. Some trajectories may be traversing the outer ‘wings’ of the attractor, others may be 
caught in a loop orbiting a fixed point. 
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The longer timescale taken for the trajectory to traverse the entirety of the wings in phase space is much 

longer than the time taken for the trajectory that is orbiting the centre of one of the wings, meaning that the 

longer time-period is at a lower frequency comparative to that of the shorter traverse.  

 

PSDs with noise 
 

This noise will then be added to the inputs of the Lorenz system, and the PSDs plotted for the time series 

solutions of the equations. This will be repeated, adding noise with increasing amplitude, and the effects 

analysed. The effects are similar for all of the time series, so specifically the x(t) series has been considered 

here for coherence.  

 

As illustrated by the below plots, as noise is added, the initial steep decay of power over frequency becomes 

shallower. This is maybe exemplified the most by figure 25d, where the red and orange lines illustrating the 

best fit line through the steepest slope and the shallower slope are converging.  

 

It is also interesting to note that contrastingly to fig 22, where the initial period of a decay resembling black 

noise develops into a smooth curve, with the addition of noise, this now represents a decay of 𝛽 ≈  −1, the 

characteristic slope of pink noise.   

 

From these plots we can see that as the amplitude of the noise is increased, the entire spectrum becomes one of pink 
noise, with slope roughly –1. Pink noise like this is found commonly in nature (Niklasson, 2019). It is interesting to find 

that with a large enough influence by the noise, the spectrum reflects that rather than retaining the initial shape 
without interference. It is also interesting to note that the spectrum becomes that of pink noise, even though the 

noise added is completely white. This implies that the overall decay of the power in the Lorenz system as frequency 
increases still has an effect when white noise is added, it is just not as dramatic an effect at very low frequency.  

 

 

Figure 25| All plots have been generated with noise of variance 0.001 with mean zero. The amplitude has been increased as follows: 
1, 50, 100 , 200 for A – D respectively. For all plots, the slope over the majority of the frequencies is relatively shallow, remaining 
around a value of -1. The line through the steeper part of the slope initially remains large with small amplitudes of noise (A), however 
the slope becomes less dramatic as more noise is added, plots B and C illustrate this with a slope of around -1.5. With larger amplitudes 
of noise, D, the best fit line through the steepest part of the graph is very similar to that for the shallower part – implying the noise is 
overall making the entire spectrum decay at a rate of -1.  

-1.089 
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-1.533 
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B) 
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Conclusion: 
 

For the parameter values stated in this report, the Lorenz system consisting of three non-linear differential 

equations for fluid flow gives rise to chaotic dynamics. Due to the non-linearities in these equations, numerical 

methods must be implemented to generate time series solutions. Various numerical methods have been 

investigated for iteratively solving systems of non-linear differential equations and their solutions have been 

illustrated. Alongside this, Brownian motion has been researched and used as a segue to introduce noise 

into the Lorenz system. Over the course of this project the time series solutions have been used to generate 

the strange attractor analogous with the Lorenz system and also have been utilised in the power spectral 

analysis, allowing the decay of power over frequency to be described in a similar way to coloured noise. 

 

The power spectral densities of the system revealed lots about the nature of the dynamics that the equations 

generate; with the sharp decay in power as frequency increases exemplifying the different timescales that 

can be observed within the system at any instantaneous moment, and the rate of decay indicating what type 

of noise this reflects. The addition of white noise to the system surprisingly didn’t make the entirety of the 

PSD white for high amplitudes of noise, the nature of the decay in the spectrum being largely pink noise is 

something that could be built upon further.  

 

Brief self-reflection and possible future research 

 

Overall, this investigation has achieved the aims that were set out in the initial introduction to the project. I 

have successfully discussed and analysed the Lorenz system as an example non-linear dynamics leading to 

chaos. Beginning this project with a lack of exposure to the numerical methods that can be used to solve 

non-linear ordinary differential equations, I feel that I have been successful in researching these and 

implementing them into my simulations. From this investigation, I have exemplified that the Lorenz system of 

equations has a strange attractor associated with it for the parameter values 𝜎 = 10, r = 29 and b = 8/3. I 

have enjoyed researching a topic completely new and exploring the system independently. I feel I was 

successful in my fixed point analysis in the 3D case especially, numerically solving the equation for the 

eigenvalues in a way that I have not seen in the literature.  

 

Having proven through the use of the Lyapunov exponent that chaos cannot be seen in the Lorenz system 

for r < 1, it would be interesting to explore more about the briefly considered noise induced chaos for these 

small values of 𝑟. Additionally, it would also be rewarding to attempt to address the ending questions that 

Lorenz left at the end of his 1963 paper – whether or not the entire atmosphere is chaotic or whether it can 

be periodic; scope to extend this project further now that I have a base knowledge of chaos would be to 

specifically consider weather dynamics and atmospheric chaos.  
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APPENDIX 
Numerical iterative methods: 
All plots have been generated in Spyder 5.3.3 which is running Python 3.9.5 – 64bit 

 

A – Forward Euler Method 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

B – Runge-Kutta 4th Order method 

import numpy as np 

import matplotlib.pyplot as plt 

""" 

 Define Lorenz attractor with three parameters sigma, beta and rho 

These floats are included in the three  non-linear diff eqns that define the attractor 

 

#Introducing Lorenz Equations:  

    dx/dt = sigma(y-x) 

    dy/dt = x(rho-z)-y 

    dz/dt=xy-betaz 

     

These describe the rate of change of x,y,z w.r.t time, t  

""” 

sigma=10 

rho=28 

beta= 8/3 

#initial conditions: 

 

x0=0 

y0=1 

z0=0 

time_end = 20 

time_step =0.01 

N = time_end/ time_step 

 

""" 

Will solve the equations numerically using Euler's method to produce three graphs,  

functions of x,y and z against time 

This method will use the idea that Yn = Yn-1 + dy/dt * time_step for all n= 1,..., N 

 """ 

t=np.arange(0.0, time_end, time_step) 

 

x=np.empty(len(t), dtype=object) 

y=np.empty(len(t), dtype=object) 

z=np.empty(len(t), dtype=object) 

 

x[0]=x0 

y[0]=y0 

z[0]=z0 

 

def lorenz_attractor_sol ( sigma, rho, beta, time_end, time_step, x0, y0, z0):   

     # updating the arrays for each of x,y,z with corresponding values by iteratively  

     #finding next value using the one before 

   

   for i in range(0, len(t)-1): 

        x[i+1]=x[i] + ( (sigma*(y[i] - x[i])* time_step))  

        y[i+1]= y[i] + (((x[i] *(rho - z[i]))-y[i]) * time_step)  

        z[i+1]= z[i] + ((x[i]*y[i] - beta * z[i]) * time_step)      

   return x, y, z 

 

lorenz_attractor_sol(sigma, rho, beta, time_end, time_step, x0, y0, z0) 

 

""" plotting the graphs for x ,y z against t """ 

plt.plot(t,y, color = 'r') 

plt.xlabel('t') 

plt.ylabel('y(t)') 

plt.title('y(t) time series') 

plt.show() 

 

fig = plt.figure() 

ax = fig.add_subplot(projection='3d') 

ax.plot(x,y,z, color = 'black') 

plt.xlabel('x(t)') 

plt.ylabel('y(t)') 

ax.set_zlabel('z(t)') 

plt.title('3D projection of the Lorenz System time series solutions x, y and z') 

 

plt.draw() 

plt.show() 
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B  - RK4 method for numerically solving the Lorenz system 
 

 

 

 

 

 

 

 

 

 

  

import numpy as np 

import matplotlib.pyplot as plt 

 

# RK4 METHOD 

 

""" Different way to solve first order ODE: 

    y1 = y0 +1/6(k1 +2k2 +2k3 +k4) 

    k1= h* f(x0, y0) 

    k2 = h* f[(x0 + h/2), y0 + 1/2k1] 

    k3 = hf[x0 + (½)h, y0 + (½)k2] 

    k4 = hf(x0 + h, y0 + k3) 

    """ 

sigma=10 

rho=28 

beta= 8/3 

 

#initial conditions: 

 

x0=0 

y0=1 

z0=0 

 

time_end = 20 

time_step = 0.01 

 

t=np.arange(0.0, time_end, time_step) 

 

x=np.empty(len(t), dtype=object) 

y=np.empty(len(t), dtype=object) 

z= np.empty(len(t), dtype=object) 

kX1 = np.empty(len(t), dtype=object) 

kY1 = np.empty(len(t), dtype=object)  

kZ1 = np.empty(len(t), dtype=object) 

kX2 = np.empty(len(t), dtype=object) 

kY2 = np.empty(len(t), dtype=object) 

kZ2 = np.empty(len(t), dtype=object) 

kX3 = np.empty(len(t), dtype=object) 

kY3 = np.empty(len(t), dtype=object) 

kZ3 = np.empty(len(t), dtype=object) 

kX4 = np.empty(len(t), dtype=object) 

kY4 = np.empty(len(t), dtype=object) 

kZ4 =np.empty(len(t), dtype=object) 

 

x[0]=x0 

y[0]=y0 

z[0]=z0 

 

kX1[0]= time_step * (sigma *( y0-x0)) 

kY1[0]= time_step * ((x0 *(rho-z0)) - y0) 

kZ1[0]= time_step * (x0*y0 - beta*z0) 

 

kX2[0]= time_step* (sigma *( (y0+ 0.5*kY1[0]) - (x0 +0.5 * kX1[0]))) 

kY2[0]= time_step * ((x0 + 0.5*kX1[0]) * (rho - (z0 + 0.5* kZ1[0]))-((y0 + 0.5* 

kY1[0]))) 

kZ2[0]= time_step * ((x0 + 0.5* kX1[0])* ( y0+ 0.5* kY1[0]) - beta * (z0 + 0.5 

*kZ1[0])) 
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kX3[0]= time_step * (sigma *( (y0+ 0.5*kY2[0]) - (x0 +0.5 * kX2[0]))) 

kY3[0]= time_step * ((x0 + 0.5*kX2[0]) * (rho - (z0 + 0.5* kZ2[0]))-(y0 + 0.5* kY2[0])) 

kZ3[0]= time_step * ((x0 + 0.5* kX2[0])* ( y0+ 0.5* kY2[0]) - beta * (z0 + 0.5 *kZ2[0])) 

 

kX4[0]= time_step * (sigma *( (y0+ kY3[0]) - (x0 + kX3[0]))) 

kY4[0]= time_step * ((x0 + kX3[0]) * (rho - (z0 + kZ3[0]))-(y0 +kY3[0])) 

kZ4[0]= time_step * ((x0 + kX3[0])* ( y0+ kY3[0]) - beta * (z0 + kZ3[0])) 

 

def RK4_sol( sigma, rho, beta, time_end, time_step, x0, y0, z0, kX1, kY1, kZ1, kX2, 

kY2, kZ2, kX3, kY3, kZ3 , kX4, kY4, kZ4): 

    for i in range(0, len(t)-1): 

        

        kX1[i+1]= time_step * (sigma *( y[i]-x[i])) 

        kY1[i+1]= time_step * ((x[i] *(rho-z[i])) - y[i]) 

        kZ1[i+1]= time_step * (x[i]*y[i] - beta*z[0]) 

 

        kX2[i+1]= time_step* (sigma *( (y[i]+ 0.5*kY1[i]) - (x[i] +0.5 * kX1[i]))) 

        kY2[i+1]= time_step * ((x[i] + 0.5*kX1[i]) * (rho - (z[i] + 0.5* kZ1[i]))-

((y[i] + 0.5* kY1[i]))) 

        kZ2[i+1]= time_step * ((x[i] + 0.5* kX1[i])* ( y[i]+ 0.5* kY1[i]) - beta * 

(z[i] + 0.5 *kZ1[i])) 

 

        kX3[i+1]= time_step * (sigma *( (y[i]+ 0.5*kY2[i]) - (x[i] +0.5 * kX2[i]))) 

        kY3[i+1]= time_step * ((x[i] + 0.5*kX2[i]) * (rho - (z[i] + 0.5* kZ2[i]))-

(y[i] + 0.5* kY2[i])) 

        kZ3[i+1]= time_step * ((x[i] + 0.5* kX2[i])* ( y[i]+ 0.5* kY2[i]) - beta * 

(z[i] + 0.5 *kZ2[i])) 

 

        kX4[i+1]= time_step * (sigma *( (y[i]+ kY3[i]) - (x[i] + kX3[i]))) 

        kY4[i+1]= time_step * ((x[i] + kX3[i]) * (rho - (z[i] + kZ3[i]))-(y[i] 

+kY3[i])) 

        kZ4[i+1]= time_step * ((x[i] + kX3[i])* ( y[i]+ kY3[i]) - beta * (z[i] + 

kZ3[i])) 

         

        x[i+1]= x[i] + 1/6 * ( kX1[i] + 2 * kX2[i] + 2 * kX3[i] + kX4[i]) 

        y[i+1]= y[i] + 1/6 * ( kY1[i] + 2 * kY2[i] + 2 * kY3[i] + kY4[i]) 

        z[i+1]= z[i] + 1/6 * ( kZ1[i] + 2 * kZ2[i] + 2 * kZ3[i] + kZ4[i]) 

         

    return x, y, z 

 

RK4_sol( sigma, rho, beta, time_end, time_step, x0, y0, z0, kX1, kY1, kZ1, kX2, kY2, 

kZ2, kX3, kY3, kZ3 , kX4, kY4, kZ4) 

 

fig = plt.figure() 

ax = fig.add_subplot(projection='3d') 

 

ax.plot(x,y,z, color = 'black') 

plt.xlabel('x(t)') 

plt.ylabel('y(t)') 

ax.set_zlabel('z(t)') 

plt.label('The 3D plot of the three time series') 

plt.draw() 

plt.show() 

 

plt.plot(x,y)  

plt.xlabel('x') 

plt.ylabel('z') 

plt.title('The trajectory generated by plotting x(t) against z(t)') 

plt.show() 
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C  - Euler Marayama Scheme for Langevin Equation 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

import numpy as np 

import matplotlib.pyplot as plt 

 

time_end = 1000 

time_step = 0.01 

 

N = time_end / time_step  

 

t=np.arange(0.0, time_end, time_step) 

 

pi= 3.142 

a = 0.001 

m = 0.001 

eta = 1 

X0 = 0 

 

np.random.seed(1) 

 

dW = np.sqrt(time_step) * np.random.randn(int(N)) # weiner process 

 

 

x=np.empty(len(t), dtype=object) 

x[0] = X0 

 

for i in range(0, len(t)-1): 

     x[i+1]=x[i] + ((-6*pi*a*eta)/m) * x[i] * time_step  + (1/m)* dW[i] 

 

plt.plot(t,x)  

 

plt.xlabel('t') 

plt.ylabel('x(t)') 
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D -  Generating a PSD 
  

fs=1000 

time_end = 1000 

time_step =1/1000 

 

# RK4 method as per Appendix B to return time series for x, y, z 

 

RK4_sol( sigma, rho, beta, time_end, time_step, x0, y0, z0, kX1, kY1, kZ1, kX2, 

kY2, kZ2, kX3, kY3, kZ3 , kX4, kY4, kZ4) 

 

spectrum = np.fft.fft(x)  # calculates FFT of the time series x(t) 

 

time_range = np.linspace(1, fs, len(t)) # defining x axis 

 

#plotting PSD 

plt.plot(np.log((time_range)),np.log(np.abs(spectrum))) 
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E – Line of best fit through PSD and integration under the curve 
 

 

  

def func(x, a, b): # define the equation I want scipy.optimize to return i.e y= mx+c 

    y = a*x + b 

    return y 

 

#fitting regression using the indexes of the lists which plot the points corresponding 

to the decay 

 

# indexes [0:950000] correspond to line through the shallow decay 

alpha = scipy.optimize.curve_fit(func, xdata = np.log(time_range[0:950000]), ydata = 

np.log(np.abs(spectrum)[0:950000]))[0] 

 

print(alpha) 

plt.plot(np.log(time_range), (alpha[0])*np.log(time_range) + alpha[1] , 'r') 

 

 

#indexes [6000:20000] correspond to steepest decay in the x(t) time series without noise 

 

beta = scipy.optimize.curve_fit(func, xdata = np.log(time_range[6000:20000]), ydata = 

np.log(np.abs(spectrum)[6000:20000]))[0] 

 

print(beta) 

plt.plot(np.log(time_range), beta[0]*np.log(time_range) + beta[1], 'orange') 

 

plt.xlabel('log frequency') 

plt.ylabel('log of PSD value') 

plt.title('PSD for x(t) of the Lorenz System on logged axes') 

 

 

plt.legend(['log frequency vs log PSD','Best fit through more shallow decay' , 'Best 

fit through steeper slope' ]) 

 

plt.show() 

 

#returns same graph of the PSD for the x(t) time series but with two slopes included 

 

from numpy import trapz 

# Compute the area using trapezoidal rule, indexes used to split the region of steepest 

decay up from the overall PSD 

 

area = trapz(np.log(time_range)[0:14000],np.log(np.abs(spectrum)[0:14000]), dx=0.001) 

print("area =", np.abs(area)) 

 

area = trapz(np.log(time_range)[14000:800000],np.log(np.abs(spectrum)[14000:800000]), 

dx=0.001) 

print("area =", np.abs(area)) 

 

plt.fill_between(np.log((time_range))[0:14000], np.log(np.abs(spectrum))[0:14000],y2=-

5,color= "darkorange") 

         

plt.fill_between(np.log((time_range))[14000:800000],np.log(np.abs(spectrum))[14000:800

000],y2=-5,color= "plum") 

 

plt.xlabel('Log frequency') 

plt.ylabel('Log PSD') 

plt.legend(['log frequency vs log PSD', 'Area under curve at low frequency', 'Area under 

curve at higher frequency' ]) 

plt.show() 
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F -  Calculating the fixed points and their stability 
 

F i) – Calculation 

 

Fixed points occur when the value of x’, y’ and z’ = 0  

 

Hence; 

0 =  𝜎(𝑦 − 𝑥)      [1] 
     0 = 𝑟𝑥 − 𝑦 − 𝑥𝑧     [2]    

 0 = 𝑥𝑦 − 𝑏𝑧     [3] 
From equation [1]: 

𝑦 = 𝑥       [4] 
Subbing [4] into [3]: 

0 =  𝑥2 − 𝑏𝑧     [5] 
Letting 𝑥 = 0, 

𝑏𝑧 = 0 

𝑧 = 0 

And since 𝑦 = 𝑥, 

𝑦 = 0 

Hence, a fixed point occurs at (0, 0, 0) 

 

Instead letting 𝑧 = 𝑟 − 1, 

 

It follows from [5]  that: 

𝑥2 = 𝑏(𝑟 − 1) 

𝑥 =  ±√𝑏(𝑟 − 1) 

And since 𝑦 = 𝑥, 

 

𝑦 =  ±√𝑏(𝑟 − 1) 

 

Hence the remaining two fixed points are at: 

(√𝒃(𝒓 − 𝟏), √𝒃(𝒓 − 𝟏) , 𝒓 − 𝟏) and (−√𝒃(𝒓 − 𝟏), −√𝒃(𝒓 − 𝟏) , 𝒓 − 𝟏) 

 
 
 

F ii) Linear Stability analysis 

 
2D linear stability analysis: The premise of this exercise is that the behaviour of the system close to the 
fixed points can be described by the linear terms in the system. 
 
Linearising the equations by removing the non-linear terms; 

𝑥′ =  𝜎 (𝑦 − 𝑥)  = 𝑓(𝑥, 𝑦)      [6] 
𝑦′ = 𝑟𝑥 − 𝑦 = 𝑔(𝑥, 𝑦)      [7] 
𝑧′ = −𝑏𝑧  = ℎ(𝑥, 𝑦)    [8] 

 
Conducting this stability analysis, the premise is that adding a small perturbation to the fixed point and 
analysing the rate of change of the perturbation with respect to time will reveal the nature of the point – i.e 
whether it is stable or not.  
 
In this case, at the point (𝑥°, 𝑦°, 𝑧°) = (0, 0, 0), eqn [8] is decoupled so 𝑧(𝑡) → 0 and is stable. 
 
In regard to the other two equations, let’s introduce a small perturbation such that 
 𝜂(𝑡) = 𝑥(𝑡) − 𝑥°      [9]   and   𝜗(𝑡) = 𝑦(𝑡) − 𝑦°    [10] . We aim to analyse the rate of change of this 

perturbation with respect to time to see whether the fixed point is stable or not.  
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Considering [9] first, 
 

𝜂′ = 
𝑑(𝑥 − 𝑥°)

𝑑𝑡
=  
𝑑𝑥

𝑑𝑡
− 
𝑑𝑥°

𝑑𝑡
 

Since 
𝑑𝑥°

𝑑𝑡
= 0 as it is at a fixed point, 

𝜂′ = 
𝑑𝑥

𝑑𝑡
=  𝑓(𝑥, 𝑦) 

So in the case of adding an arbitrary deviation from the point, 
𝜂′ = 𝑓(𝑥° + 𝜂 , 𝑦° + 𝜂) 

 

𝜂′ = 𝑓(𝑥°, 𝑦°) +  𝜂 (
𝜕𝑓

𝜕𝑥
) +  𝜗 (

𝜕𝑓

𝜕𝑦
) + 𝑂(𝜂2) 

 
Where the partial derivatives are evaluated at 𝑥°, 𝑦° and the above equation is the result of a Taylor 

expansion 
 
Since this is at a fixed point, then 𝑓(𝑥°, 𝑦°) is zero, and so: 

  

𝜂′ =  𝜂 (
𝜕𝑓

𝜕𝑥
) +  𝜂 (

𝜕𝑓

𝜕𝑦
) + 𝑂(𝜂2) 

Where terms of order 𝜂2 or larger have not been considered 
 
Similarly, for eqn [10]: 

𝜗′ =  𝜗 (
𝜕𝑔

𝜕𝑥
) +  𝜗 (

𝜕𝑔

𝜕𝑦
) + 𝑂(𝜗2) 

 
Representing this in matrix form: 

(
𝜂′

𝜗′
) =  

(

 
 

𝜕𝑓

𝜕𝑥

𝜕𝑓

𝜕𝑦

𝜕𝑔

𝜕𝑥

𝜕𝑔

𝜕𝑦)

 
 
(
𝜂
𝜗
)        [11] 

Ignoring any higher order terms as they are small in comparison the size of the perturbations 
 
In [11] we can see that this includes the Jacobian matrix, J, of the vector field at 𝑓(𝑥°, 𝑦°), and this 

technique will also be used when analysing the stability of the three-dimensional case. Now that we have 
the Jacobian of the vector field at the fixed point, we can use this matrix to determine its stability (Strogatz, 
2015). 
 
In the case of the linearised equations [6] and [7], this becomes: 
 

(
𝜂′

𝜗′
) = (

−𝜎 𝜎
𝑟 −1

) (
𝜂
𝜗
) 

 
A key idea that I will now be using in stability analysis is that the eigenvectors of the Jacobian matrix will 
indicate the nature and stability of the fixed point.  
 

Finding the eigenvectors using (𝐽 −  𝜆𝐼) (
𝜂′

𝜗′
) =  (

0
0
)  ,  

The characteristic equation for the eigenvalues being: 
 

𝑑𝑒𝑡 (
−𝜎 − 𝜆 𝜎
𝑟 −1 − 𝜆

) = (𝜎 + 𝜆)(1 + 𝜆) − 𝑟𝜎 

= 𝜆2 −   𝜆(−(1 + 𝜎)) +  𝜎(1 − 𝑟) = 0  
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Note that I have put the above in that form to note certain characteristics of the equations, this being that 
the coefficient of the −  𝜆 term is the trace of J and the final term is the value of det(J). These quantities will 
help us comment on the stability of the fixed point, with the sign of the determinant, trace and the sign of 

Τ2 − 4Det(𝐉) indicating what type of fixed point we are dealing with (Strogatz, 2015).  

 
If the determinant is negative we have a saddle point. If the determinant is positive but Τ2 − 4Det(𝐉) is 

negative then we have a spiral but if Τ2 − 4Det(𝐉) is positive we have a node. The sign of Τ indicates the 
stability of these spirals and nodes, with Τ > 0  indicating it is unstable and Τ < 0  indicating stability 

(Strogatz, 2015). 
 
 

Hence, the value of Τ2 − 4Det(𝐉) is         (1 + 𝜎)2 − 4𝜎(1 − 𝑟) = (𝜎 − 1)2 + 4𝜎𝑟 
 
Since the origin as a fixed point exists for both 𝒓 < 𝟏  and 𝒓 > 𝟏 , we must consider these two cases 

separately.   
 
𝒓 < 𝟏  : 
 

Then Det(J) will be positive and Τ2 − 4Det(𝐉) is positive also, so we have a node. Since Τ is negative then 
the origin is is a stable node for 𝒓 < 𝟏 . Any small perturbation will result in the trajectory being pulled 

back into the origin. This has been proved to be globally stable via the use of the Lyapunov exponent 
in the text – no strange attractors for 𝒓 < 𝟏 .   
 
𝒓 > 𝟏  : 
 
Then Det(J) will be negative and we have a saddle point at the origin for 𝒓 > 𝟏  , so in 3D space this 

means it is stable in two directions and unstable in the third (Strogatz, 2015).  
 
What about the symmetrical points that emerge for 𝒓 > 𝟏  : 
 
Again, similarly to the previous case for the origin, we will consider the Jacobian matrix of the vector field at 
the fixed point 𝑓(𝑥°, 𝑦°, 𝑧°). In this case, consider perturbations in the x direction as 𝜂(𝑡) = 𝑥(𝑡) − 𝑥°    [9] , y 
direction as 𝜗(𝑡) = 𝑦(𝑡) − 𝑦°   [10] and the z direction as 𝜃(𝑡) = 𝑧(𝑡) − 𝑧°     [12] . We are not considering 

the linear stability here, but using the original equations for the Lorenz system including the non-linearities, 
hence : 

𝑥′ =  𝜎 (𝑦 − 𝑥)  = 𝑓(𝑥, 𝑦)      [13] 
𝑦′ = 𝑥(𝑟 − 𝑧) − 𝑦 = 𝑔(𝑥, 𝑦)      [14] 
𝑧′ =  𝑥𝑦 − 𝑏𝑧  = ℎ(𝑥, 𝑦)    [15] 

 
 

(
𝜂′

𝜗′
𝜃′

) =  

(

 
 
 
 

𝜕𝑓

𝜕𝑥

𝜕𝑓

𝜕𝑦

𝜕𝑓

𝜕𝑧
𝜕𝑔

𝜕𝑥

𝜕𝑔

𝜕𝑦

𝜕𝑔

𝜕𝑧
𝜕ℎ

𝜕𝑥

𝜕ℎ

𝜕𝑦

𝜕ℎ

𝜕𝑧)

 
 
 
 

(
𝜂
𝜗
𝜃
)        [16] 

 

(
𝜂′

𝜗′
𝜃′

) =  (
−𝜎 𝜎 0
𝑟 − 𝑧 −1 −𝑥
𝑦 𝑥 −𝑏

)(
𝜂
𝜗
𝜃
)        [17] 

 
 
 
 

Consider the fixed point C+ =  (√𝑏(𝑟 − 1)  , √𝑏(𝑟 − 1)  , 𝑟 − 1) 
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[17] becomes: 

(
𝜂′

𝜗′
𝜃′

) =  (

−𝜎 𝜎 0

1 −1 −√𝑏(𝑟 − 1) 

√𝑏(𝑟 − 1) √𝑏(𝑟 − 1) −𝑏

)(
𝜂
𝜗
𝜃
)         

 
 
Once again finding the eigenvalues to comment on the stability of the fixed points: 
 
 

𝑑𝑒𝑡(

−(𝜎 + 𝜆) 𝜎 0

1 −(1 + 𝜆) −√𝑏(𝑟 − 1)

√𝑏(𝑟 − 1) √𝑏(𝑟 − 1) −(𝑏 + 𝜆)

) = 0 

                                                                               = −(𝜎 + 𝜆)[(1 + 𝜆)(𝑏 + 𝜆) + 𝑏(𝑟 − 1)] −  𝜎[−(𝑏 + 𝜆) + 𝑏(𝑟 − 1)] 
 

= −(𝜎 + 𝜆)[𝜆2 + 𝑏𝜆 + 𝜆 + 𝑏𝑟] −  𝜎(−2𝑏 − 𝜆 + 𝑏𝑟) 
 

= −𝜆3 − 𝜆2(1 + 𝑏 + 𝜎) − 𝜆(𝑏𝑟 + 𝑏𝜎 + 𝜎 − 𝜎) + 2𝜎𝑏 − 2𝑏𝑟𝜎 

 
= −𝜆3 − 𝜆2(1 + 𝑏 + 𝜎) − 𝜆𝑏(𝑟 + 𝜎) + 2𝜎𝑏(1 − 𝑟) 

 

= 𝜆3 + 𝜆2(1 + 𝑏 + 𝜎) + 𝜆𝑏(𝑟 + 𝜎) + 2𝜎𝑏(𝑟 − 1) 
 
 
Using our values of 𝑏 and 𝜎,  

0 =  𝜆3 +
41

3
𝜆2 +

8

3
𝜆(𝑟 + 10) +

160

3
(𝑟 − 1) 

 
 
We aim to find a range of values for 𝑟,  if they exist, where the points C+ and C- are stable. From the 

literature I have determined that there is a region of values where these fixed points are stable, and another 
region where they are unstable (Strogatz, 2015). If the solutions have negative real values then we can 
deem these to be stable points, if they have positive real parts then we deem them unstable (Clack, 2006).  
 
 
Numerically solving this, I have deemed these real roots to occur for 1 < 𝑟 < 24.7, which agrees with the 
literature on this topic. Hence the fixed points C+ and C- are unstable for < 24.7.  
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G  - Plotting the stability of the C+ and C- points 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

import sympy  

import numpy as np 

import matplotlib.pyplot as plt 

 

 

 

x=sympy.Symbol('x') 

 

values = np.linspace(20,30,100) 

 

 

real_values=[] 

for i in values: 

    poly = x**3 + 41/3*x**2 + 8/3*x*(i+10) + 160/3*(i-1) 

    roots = sympy.solve(poly,x) 

    real_values.append(sympy.re(roots[1])) 

 

plt.plot(values,real_values) 

plt.axvline(24.7, color='r', linestyle='--') 

plt.axhline(0, color='r', linestyle='--') 

plt.xlabel('values for r') 

plt.ylabel('values of the real part of the imaginary solutions for the cubic 

equation') 

plt.title('How the eigenvalues of the Jacobian of the Vector field at the fixed 

point vary with increasing rho') 

plt.show() 
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