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1 Introduction

1.1 Summary

The Formula 1 Race Strategy Competition is a simulated Formula 1 race season in which
a number of teams compete to maximise a season points total by investing a fixed budget
across four variables. Each of the four variables, marketing, reliability, chassis and engine,
are components that affect the lap time model for each given race [1]. The question of de-
veloping an optimal budget strategy for the competition is made difficult by the stochastic
processes involved in the competition rules, the incomplete information of unknown com-
peting team strategies and the huge number of possible strategy combinations, which we
show to be 1.701 - 10%3 [2]. Tt is not considered computationally feasible to test all the
possible budget split strategies a team may implement. Our objective is to develop a com-
putationally feasible method that will maximise our chance of success in the competition
by obtaining an optimal budget split for a single team.

Beaume (2021) demonstrates that computational methods can be designed to develop
competitive budget strategies. In particular, success is obtained using a combination of
an iterative method, a genetic algorithm and artificial intelligence to predict participating
team budget strategies [3]. In this paper, we develop an alternative computational method
to obtain a competitive budget split strategy, Appendix A, and consider the problem of
addressing the unknown values of competing team strategies. We develop a computational
program to simulate a large number of race seasons, which enables us to define our satisfac-
tion with the expected performance of a given budget split strategy through a defined cost
metric. Heuristic methods can be applied in conjunction with our computational simulation
as a method to obtain an optimal budget split strategy [4]. We will consider the compu-
tational cost of implementing a heuristic tool and the computational trade-offs involved in
their application [5].

Particle swarm optimisation (PSO) is an optimisation technique that draws analogies
from the movement of a flock of birds collectively searching for food [6]. PSO has been
applied to a variety of optimisation problem applications due to its ease of implementation
and relative speed of convergence [6, 7]. An important component of PSO is its inertia weight
parameter, w, and acceleration parameters ¢; and ¢y [8, 9]. We will examine the impact
of these parameters on the convergence and success of the particle swarm optimisation
algorithm when it is implemented to optimise the budget split strategy of a team [10, 11].
We will develop a penalty function to increase the likelihood of particles taking admissible
positions during PSO implementation [12]. By considering the absolute distance moved by
each particle between iterations we will determine suitable and unsuitable parameter values
for our application of PSO, in particular, we will show that w = 0.9 performs significantly
worse than w = 0.42 for particle convergence due to the impact on the scale of particle
velocity. We will obtain a competitive budget split strategy for a team and evaluate the
effectiveness of this strategy compared to the strategy of competing teams.

This paper demonstrates the effectiveness of PSO at generating near-optimal budget
split strategies for a single team in the competition. While these results were obtained for a
sample of competing team budget splits, our method could be extended to consider a range
of competing strategies or altered to compete against dynamic strategies that can evolve
between iterations. We believe our methodology and results could also be adapted for a
wide range of constrained and unconstrained optimisation problems.



1.2 Ethical Considerations

Our research aimed to develop an optimal strategy for a Formula 1 race team. Although our
research focused on a simulated Formula 1 competition [1], our aim was that the particle
swarm optimisation techniques we used could be implemented by a professional race strategy
engineer during a real Formula 1 race season. Additionally, our methodology could be
adapted to develop optimal strategies for a wide range of constrained optimisation problems
across several diverse industries including hardware design and cyber security. With the high
level and wide-ranging potential applications of our research, it is important to consider
both the benefits to society and also the potential risks and negative applications. In
demonstrating the adaptability of particle swarm optimisation to efficiently discover “near
optimal” solutions to complex, constrained optimisation problems, there is a risk that these
techniques may be used maliciously to cause harm. There is also a risk that the techniques we
propose are used improperly, in a way which may contribute towards causing unintentional
harm. For example, our current optimisation problem does not model driver safety and
only focuses on maximising the finishing position according to our defined metric. As such,
our method may suggest budget strategies that, while successful, may negatively impact
drivers’ safety.

2 Problem Setup

2.1 Competition Rules

We consider a number of teams, n, competing in a Formula 1 Race Strategy Competition
[1]. Each team has a budget of 8 to be allocated across four variables, marketing, chassis,
engine and reliability, with a precision of up to one decimal place. We wish to optimise the
budget split of a given team, which we define to be the combination of the four variables
that the team possesses, in order to maximise the team’s expected performance as judged
by a metric which we will later define.

Let the marketing budget of team i be m;, then a given driver will sign with team ¢ with
the following probability [1]:

m?

—, (1)

n
> mj
j=1

pi =

where there are 2n drivers in total, and each team is assigned exactly two drivers. Each
driver possesses a driving ability, denoted Driving, measured from 0% to 5x. The drivers are
assigned to teams in order of driving ability, where the driver with the highest Driving is
assigned first. Each time a team has been assigned two drivers it is considered full, and p; is
recalculated with n reduced by 1 to represent the one less team available for the remaining
drivers to sign to. The investment of this removed team is discounted from the calculation
of Equation (1). In the case where each remaining team has a marketing investment, m;,
equal to zero, then a given driver has an equal probability of signing with each available
team.
Let the chassis investment of a team ¢ be ¢;, then the associated chassis performance,
cp; (given in %) is [1]:
CPix < Cj. (2)



Let the engine investment of a team ¢ be e;, then the associated engine performance, ep;
(given in *) is [1]:

epix — €;. (3)
So we have that chassis and engine investment, in i, are equal to chassis and engine per-

formance, given in %, respectively. Let the reliability investment of team ¢ be r;, then the
retirement probability of a driver assigned to team i, for a given race, is [1]:

P [1- erf(O.Zri — 1.5)]27 @)

where DNF' stands for “Did Not Finish”, and erf represents the error function. The lap
time, t, for a given driver, Driver, signed to a given team ¢, racing on a given circuit, is [1]:

t =ty + tpers + Dt + Py + Riap, (5)

where p; and py are circuit-specific time penalty functions modelling tire wear and fuel
load respectively. Ry, is the random function modelling pace irregularities specific to each
driver, defined as [1]:

Riap = 4(Xgng — 0.4)% + 0.3Xrye, (6)

where X gn¢ is a random number drawn from the uniform distribution between 0 and 1. ¢,
is the base time associated with the given circuit and t,e,s is defined as [1]:

tperf = —0.15(Performance + Setup), (7)
where Performance is [1]:

3(Driving - cq + ¢; - Cc + €; - Ce)
Cd + Cc + Ce

Performance = , (8)
where ¢4, ¢, and ¢, are circuit-specific weightings denoting that a circuit favours driver,
favours chassis and favours engine respectively. Each circuit-specific weighting is equal to 1
unless the given circuit favours the component it denotes, where it is doubled so equals 2.
For example, a balanced circuit would have the following values, ¢4 =1, ¢4 = 1 and ¢, = 1.
A circuit that favours engine investment would have the following values, ¢q = 1, ¢, = 1 and
ce = 2 and a circuit favouring driving and favouring chassis would have values as follows,
cqg = 2, ¢cc =2 and ¢, = 1. Setup is defined as the sum of two random numbers drawn
from two uniform distributions [1]. The first number is associated with the given team, i,
and is drawn from a uniform distribution between —0.5 and 0.5. The second number is
associated with the given driver, Driver, and is drawn from a uniform distribution between
—1 and 1. Traffic, the drag reduction system (DRS) and overtaking rules are also defined
as aspects of the Formula 1 Race Strategy Competition [1]. However, due to the increase
in computational complexity associated with modelling these aspects, which we will later
examine, in comparison with the increased relatively small impact we assume they have, we
choose to ignore these components in our research.

2.2 Initial Problem Analysis

Let us consider the budget split of some participating team, “Team 1”. We first consider
the investments of “Team 17, in chassis, ¢;, and engine, ¢;. From Equation (2) and Equation



(3) we have that the chassis and engine performances, cp; and ep;, are equal to the amount
“Team 1” invests in each variable respectively. If a circuit favours chassis and engine equally,
that is if ¢, = ¢, then from our lap time equation, Equation (5), and the Performance
component, Equation 8, the chassis and engine investment of “Team 1” will have equal effects
on the lap time of a given driver assigned to “Team 1”. Now let us consider the investment
into marketing for “Team 1”. Unlike for chassis and engine, we can see that from Equation
(1), increasing marketing investment does not guarantee an increase in the driving ability,
Driving, of the team’s assigned drivers. Instead, we can see that increasing marketing
investment for “Team 17 increases the probability that drivers that possess a high driving
ability, Driving, will be assigned to it. From Equation 1 we can see that the relationship
between driver assignment probability, p;, and marketing investment is dependent on the
budget splits of the n — 1 teams participating against “Team 1”. To illustrate this, consider
two teams, “Team 2” and “Team 3”, competing against each other to sign the following
two drivers who have the driving ability, Driving, of 4.7x and the driving ability, Driving,
of 2.2 respectively. If both “Team 2” and “Team 3” invested 0: into marketing, such that
meo = m3 = 02, then each team would have an equal, 50% chance of signing the 4.7 driver.
However, if “Team 2” increased the investment into marketing, while “Team 3” remained
the same, such that mg = 0.12 and m3 = 0z, then by applying Equation (1) we can see that
“Team 2” would have a 100% of signing 4.7+ driver. However if “Team 3” also increased
the investment in marketing, such that ms = 0.1z and ms = 0.1:, we have that both
teams would again have a 50% chance of signing the 4.7x driver. Hence, we demonstrate
that this probability is dependent on the marketing investments of the competing team
or teams. Beaume (2022) gives another example of this dependency and goes further by
demonstrating that an excessively large marketing investment of a team, “Team 2”7, can be
exploited through the withdrawal of marketing investment by the competing team, “Team
3”7 [3].

Let us consider the reliability investment of some participating team, “Team 1”. Unlike
marketing, chassis and engine investments, the reliability investment of a team is not made
with the purpose of improving the lap times of a team’s drivers on a given race. It is instead
a way to increase the probability that a team’s drivers will successfully complete a given
race. If a driver retires during a given race then they are not eligible to receive points for that
race. As such, the reliability investment of “Team 1”7 can be framed as a trade-off between
attaining a low retirement probability and decreasing its driver’s lap times. For example,
investing a large value of ¢ in reliability at the cost of decreased investment across chassis,
engine and marketing (the Performance components from Equation (8)) will produce a car
that is expected to finish a large number of races. However, in those races it does finish, the
car will not be as fast due to the sacrificed investment in the three Performance components
from Equation (8). As a result, the team will be expected to attain a lower number of points
per race finished, which we will denote as ppf, due to the slower expected lap times. In
contrast, if a team invests a low amount of ¢ into reliability, and instead increases the invest-
ment across variables that increase the components of Performance in Equation (8), that
is chassis, engine and marketing, they are expected to finish a lower amount of races but
produce quicker lap times. As a result, they should achieve comparatively higher finishing
positions in races that they do finish, resulting in a higher ppf. Hence they are expected
to earn more points per race finished, ppf, but finish fewer races per season. An optimal
reliability investment could be defined as one that maximises the average product of the
expected value of ppf and the expected number of races completed for a team’s two drivers.
In Figure 1 we can see that the relationship between reliability investment and the proba-
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Figure 1
DNF Probability, Ppyr, for a single race plotted as a function of a team’s reliability
investment, r;, as described by Equation (4).

bility that a driver will retire in a given race, denoted “DNF Probability”, is a non-linear
decreasing function, Equation (4). Figure 1 illustrates that for investments in reliability
above 2.41, there is an extremely low return on investment in terms of “DNF Probability”
reduction and that beyond 2.9: the “DNF Probability” appears to converge to just above
zero, taking its lowest value, 1.4312- 10731, at 8. From Figure 1 we see that for reliability
investments below 2.41, there is a significantly larger decrease in “DNF Probability” as re-
liability investment increases compared to beyond 2.47, where “DNF Probability” begins to
converge. This indicates that we may expect that an effective reliability investment is likely
to be within the range (0,2.41), as this range gives us a higher return on investment. That
is, we achieve significantly higher increases in “DNF Probability” per each additional 0.1z
invested in reliability, r;.



3 Model

3.1 Competition Objective

We aim to locate the optimal budget split for a given team, “Team 1”7, assuming we know
the budget splits of each other team participating in the Formula 1 Strategy Competition
[1], where there are n teams participating in total. We define the optimal budget split for
“Team 1” to be the combination of chassis investment, ¢, engine investment, ey, marketing
investment, mi, and reliability investment, r;, that maximises the satisfaction we have
with the expected finishing position of “Team 1”7 for a single race season. To calculate
the expected finishing position for each of the n participating teams we develop a season
simulation subroutine. For every single race, the subroutine uses Equation (4) to remove the
drivers that it calculates do not finish, DNF. It then ranks the remaining drivers in each race
by tpers and ranks teams based on the sum of each team’s associated driver’s points [1] after
all ten races. The subroutine ignores random effects but does not ignore the probabilistic
driver allocation and driver DNF processes. Therefore, we must consider the variance in
the output of the season simulation subroutine and determine a large enough number of
calls to the subroutine to generate an accurate expected finishing position for each team.
A higher number of calls to the subroutine will give a more accurate expected finishing
position, however, this comes at the cost of increased computational complexity. We will
further examine this trade-off when we later implement our particle swarm optimisation
program.

We define a metric that quantifies our satisfaction level with a given season finishing
position for a team, “Team 1”. We chose to define our metric as follows, as it best describes
our personal satisfaction with each final season finishing position for a given team:

32, 1% Place.
16, 2" Place.
4 3'4 Place.
tric= 14 9
merne 2, 4% Place. ©)
1,  5*" Place.
0, otherwise.

Although we could aim to maximise this metric, we instead seek to minimise the negative
of this metric, —metric, as the difference in these two aims is trivial for our purpose. Then
we can define the budget split for “Team 1”7 that minimises the expected value of —metric
for “Team 1”7, where we assume we know the fixed budget splits for each n participating
team, to be the optimal budget split strategy for “Team 1”.

3.2 Season Simulation Subroutine

We develop our subroutine using Python, due to the extensive collection of available, rel-
evant libraries and visualisation packages. To use our subroutine, we load into Python
three excel data frames, which we denote as “budgetsplit”, “driverlist” and “circuitlist”.
The “budgetsplit” data frame contains the set of budget splits for each of the n partici-
pating teams. The “driverlist” data frame contains the names of the participating drivers
and their associated driving ability, Driving. The drivers are given in descending order



by Driving. The “circuitlist” data frame contains the circuit name, favourability weight-
ing, follow delta, overtake delta, number of laps, and base lap time for each of the ten
circuits. We note that the follow and overtake deltas are aspects of the competition related
to traffic, DRS and overtaking which we choose to ignore. We define the function “season-
sim(budgetsplitnew, driverlist, circuitlist)” to take as input two of the three above-defined
data frames, “driverlist” and “circuitlist”. We exclude “budgetsplit”, which we have re-
placed with “budgetsplitnew”. “budgetsplitnew” is a copy of the “budgetsplit” data frame,
but which we update with a different budget split for a single participating team. This is
necessary for our subsequent implementation of the particle swarm optimisation algorithm
which we shall later describe. The output of our “seasonsim(budgetsplitnew, driverlist, cir-
cuitlist)” function is the ordered season finishing position of each n participating team and
the associated cost metric value, —metric, we choose to assign to each respective finishing
position. The function works through two primary components, the driver allocation func-
tion and the lap time calculation function. The Python code to produce the function can
be seen in Appendix A.

3.2.1 Driver Allocation Function

The first component of the “seasonsim(budgetsplitnew, driverlist, circuitlist)” function is
the driver allocation process. We use Equation (1) to assign drivers to a team sequentially,
in descending order based upon driving ability, driving. Our program works by calculating
the value of Equation (1) and assigning it to be the dictionary value corresponding to the
associated team, assigned as a key. We repeat a similar technique for a new dictionary in
which we assign to each driver one random probability value taken from a uniform distribu-
tion between 0 and 1, which we denote as the driver’s probability value. We then take the
teams in a given order, which is trivial, and calculate the sum of all Equation (1) values up
to the current team, for each team. We denote this value as prange, of each team. We then
begin with the driver with the largest Driving and proceed in descending order, comparing
the driver’s probability rating to the value of prange, of each team. We assign the driver to
the team with the smallest value of prange, that is greater than the driver’s probability value.
For example, if we have 3 teams, named A, B, and C, with marketing budgets of 2.2:, 0.8
and 1.6¢ respectively we can calculate that they have the following values of Equation (1),
0.77, 0.01 and 0.22. Let us consider 6 participating drivers, with Driving of 5x, 4.8%, 4.4x,
3.0, 2.2x and 1.0% respectively. In this case, we would begin with the 5x driver. Consider
we have drawn a probability value of 0.47 from our uniform distribution for this driver.
Then from our Equation (1) values, we would assign this driver to team A. We repeat this
process for each driver until any team has been assigned two drivers. At this point, we
recalculate the Equation (1) values for each team, first removing the team which has two
drivers assigned from the calculation. We do this each and every time a team is assigned
two drivers until all drivers have been assigned to a team.

3.2.2 Lap Time Calculation Function

The second component of the “seasonsim(budgetsplitnew, driverlist, circuitlist)” function is
the lap time calculation. We calculate a lap time for a given driver, driver, driving for a
given team, “Team ¢”, using an adaptation of Equation (5). However, we ignore p; and py
as we consider these components to be independent of the budget split strategy of a team.
We also adapt this equation to ignore random effects by not considering the R;,, and the



setup component of ¢,..r. The resulting equation is as follows:
t =ty — 0.15( Performance), (10)

which gives us an expected lap time for each driver. For a given circuit this equation is
entirely determined by the driving ability of the driver, Driving, chassis investment (c¢1),
engine investment (e;) and reliability investment (r1), and is independent of lap number,
remaining constant for all laps in any given race. As such, we rank the driver finishing
position in any given race in ascending order by the result of Equation (10). This method
reduces the computational cost of our season simulation function, as we compute Equa-
tion (10) for n drivers, looping through 10 circuits for a single season. If our method was
instead dependent on the original lap time equation, Equation (5), and as such did consider
random effects described in setup, Riqp, pr and py, we would have to loop through between
44 and 88 laps per circuit, for n drivers across 10 circuits. Hence we would have at minimum
a 44 times increase in complexity by implementing this alternative method. As such we do
not consider the random effects and the saving in computational complexity allows us to
run our simulation a larger number of times at the same computational cost. The final step
of the lap time calculation function is to calculate the final team rankings for a given season.
This is calculated according to the individual race points allocation [1] for each driver, and
then the sum of the season total points of each team’s associated drivers is calculated. The
teams are ranked by total points, and given a cost metric score, —metric, as described in
Equation (9).

4 Model Analysis

4.1 Budget Split Generation

In order to use our season simulation function, we must first provide three inputs, “budget-
splitnew”, “driverlist” and “circuitlist”. “driverlist” and “circuitlist” are given for any race
season, and are taken to be known. However for some participating team, “Team 1”7, the
budget splits of each other n — 1 participating teams in the Formula 1 Race Strategy Com-
petition [1] are unknown. In our competition objective, we aim to locate the optimal budget
split for a given team, “Team 1”, assuming that the n — 1 budget splits are known. We
start by optimising for a single, known set of budget splits because it is a less complicated
case to consider, and because by developing a method to optimise the budget split of “Team
1”7 for any known set of n — 1 budget splits it gives us a platform to address the case of
optimising for some unknown set of n—1 budget splits. As such, we will use some method to
predict the budget splits of each team, which we will set to be the “budgetsplitnew” input
in our season simulation function. If available, we could use previous competition budget
split data to develop a predictive model. However, given that the competition has not run
previously with the exact same rules as our current season [1], we do not have this desired
data available. Instead, we shall randomly generate a budget split for each n team, where
we make some key assumptions about the behaviour of each participating team. First, as
shown in 1, we will restrict reliability investment to below 2.4, as we have seen that beyond
2.41 the return on investment increase categorised by the “DNF Probability” decrease is
close to 0. We will further restrict the reliability investment range for each team, r;, to
below 2.0z, as beyond this investment level we see a significant increasing diminishing of the
return on investment shown by the Figure 1 curve becoming rapidly increasingly shallow



with each additional 0.1z invested into r;. In addition, we make the assumption that partici-
pating teams will desire a “DNF Probability” of below 40%. We make this assumption as we
believe participating teams will want their associated drivers to finish most races. If there is
a viable high “DNF Probabililty” but fast expected lap time strategy, we can see that this
strategy would be high variance with teams performing well or badly predominantly down
to the DNF function, that is how many races the drivers finish. In real-world racing, this
would not be considered viable as it takes a significant risk with driver safety. Although
the risks are less significant in our simulated competition [1], we still work with the same
assumption that teams will get more satisfaction from seeing drivers finishing races. This
causes us to select the floor of the range from which we will select r; to be 1.5z, as the “DNF
Probability”, ppyr, is equal to 0.3411 at 1.52 and ppyr, is equal to 0.4000 at 1.42. So from
Figure 1 we have r; < 1.5 = ppyr > 40%. Due to this assumption, we select r; as a
random number, X Rrn¢g, drawn from a uniform distribution between 1.45 and 1.95 and
rounded to one decimal place.

On the marketing investment assumptions for a team, i, we have that the maximum
driving ability of any driver is 5%. As such, any team investing above 52 could certainly
gain a better return on investment for a given driver by investing in either chassis, ¢; or
engine, e;, given that the investment in these variables is equal to the performances cp; and
ep; respectively, so the return on investment is 1 for each variable. For example, consider
a team, “Team 1”7, investing above 57z in marketing, m;. The best possible outcome would
be to sign the two drivers with the highest driving ability, Driving, that is 5.0x and 4.8x.
Only considering the higher rated driver, 5.0x, we have the return on investment given by
mil < 1 since m1 > 5. In contrast, the return on investment for chassis and engine, ¢; and
e;, are equal to 1. So we have that the return on investment for “Team 1” would always
be greater invested in chassis or engine, ¢; and e;, for marketing investment greater than 5,
m; > 51. We make the assumption that participating teams will aim to maximise the return
on budget investment and so we select m; as a random number, X Mrng, drawn from a
uniform distribution between —0.05 and 5.05 and rounded to one decimal place.

Once we have selected the values for reliability and marketing investment, X Rpyg = 75
and X Mpye = m;, we will denote our remaining budget after subtracting marketing and
reliability investment, RB;, as 8 —r; —m; = RB;. From the given ranges for m; and r; we
have that 1.00 < RB; < 6.6:. We can therefore select the chassis investment, ¢;, for team
i, to be a random number, X Crya chosen from a uniform distribution between —0.05 and
RB; + 0.05 rounded to one decimal place. We can then define engine investment, e; to be
the remaining budget after chassis, marketing and reliability investment have been made.
That is, e, = RB; — ¢;. An example of this budget selection for “Team 1” is that first we
randomly select our marketing investment as 0.3z, that is, X Mrnyg = m1 = 0.3:. We then
randomly select X Rryg = r1 = 1.7, giving our reliability investment as 1.7:. We calculate
RB; = 8 — 1.71 — 0.31 = 61, and select ¢; from a uniform distribution between —0.05 and
6.05. The chassis investment ¢; is randomly selected to equal 5.1z, and so we can calculate
e; = 61— 5.12 = 0.9:, giving our engine investment as 0.92. Hence the resultant budget split
for “Team 1” is given as follows, [m;,r;, ¢;, e;] = [0.31,1.72,5.12,0.92]. We repeat this process
for each n team, which gives us a sample set of budget splits, BS1, shown in Table 1.

10



Table 1: Randomly generated budget split set, B.Sy, for n = 11 participating teams.

Team Marketing Reliability Chassis Engine SUM
1 0.3 1.7 5.1 0.9 8
2 1.1 1.9 4.6 0.4 8
3 2.4 1.7 0.5 3.4 8
4 3 1.8 2.4 0.8 8
5 2.8 1.6 0.4 3.2 8
6 2.2 1.5 2.1 2.2 8
7 2 1.8 4 0.2 8
8 1.3 1.6 2 3.1 8
9 2.2 1.5 3.4 0.9 8
10 0.4 1.7 2.4 3.5 8
11 3.5 1.8 1.9 0.8 8
4.2 Simulation Analysis
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Figure 2

Smoothed density plots of season points for n = 11 teams for budget split set BS;. Data
generated through 10000 calls to our season simulation function.

Now that we have generated a set of n = 11 budget splits, BS7, we can analyse the
data that our season simulation function produces by setting it to be the function input,
“budgetsplitnew” = B.S;. As we discussed in Section 3.2.1, our season simulation function

is probabilistic due to the stochastic driver allocation and driver DNF processes.

11
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implies that both the total season points and our cost metric, —metric, will follow some
probability distribution, which will differ for each n = 11 teams for a given set of budget
splits, BS;. We examine this by using our running our season simulation function 10000
times to generate a large sample of total season points for each nteam. In Figure 2 we have
produced smoothed density plots for all n = 11 teams, which show the distributions of the
total season points for each team. We can see from Figure 2 that “Team 4” and “Team 5”
have sample distributions that appear to reasonably approximate bell curves. In contrast,
“Team 3”7, “Team 67, “Team 7” and “Team 9” show positive skews, where the majority of
data points for each of these teams are clustered towards the left side of the distribution.
For “Team 1”7 and “Team 10” we see much narrower distributions, with a slight positive and
a slight negative skew respectively. “Team 2”7 and “Team 8” both show large tails towards
the right side of the distribution, also possessing positive skews but in a more pronounced
manner than the previous positively skewed distributions we have discussed. Finally, “Team
11”7 shows a negatively skewed distribution, where the majority of data points are clustered
towards the right-hand side.

5 Particle Swarm Optimisation (PSO)
5.1 Method

Using our season simulation subroutine we aim to determine the budget split for a given
team, “Team 1”7, which minimises our defined cost metric, —metric, when given the budget
splits of n — 1 other participating teams. Our season simulation subroutine allows us to
generate performance data and our cost metric score for a given team, “Team 1”7, for any
combination of budget splits for some number, n, of participating teams. An initial idea
would be to test each possible budget split for “Team 1” by simulating the season some large
number, s, of times in order to return an accurate expected cost metric for each different
possible budget split. Let us consider the number of feasible budget splits we would be
required to test. Feller [2] set out a stars and bars method for calculating the number of
ways to divide some number of identical items, j between some number of bins, ¢, using the

following formula:
] —1 ] —1)!
<J+q ):(JHJ'_)“ (1)
q—1 (¢ —1()!
which we can apply to calculate the number of feasible budget splits. Given that “Team 1”
has a budget of 8, which can be spent with a precision of up to one decimal place, then this
implies there are 81 identical items to divide between the four variables that encompass the
budget split. That is, we have j = 81 and ¢ = 4. Applying this to Equation (11) gives us
the following:

814+4—-1
4-1

) = 95284, (12)

which is the number of possible budget splits “Team 1” could take, on the condition that
it uses the entire budget of 8. Let us define comp to be the computational complexity of
one call to our season simulation function. Then we have the complexity of testing every
possible budget split to be comp-s-95284. This is not feasible due to the limited computing
resources at our disposal, so we shall aim to use an alternative method to locate the budget
split for “Team 1” that minimises our cost metric. Another idea is that we may choose
to only test a random sample of possible budget splits, and settle on the best budget split
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out of those tested. However, as we have demonstrated with Equation (12), this method
gives us a high probability of not considering the best possible budget splits if we choose a
small sample. Alternatively, if we choose a large sample, we run into the previous problem
of facing a computation that is too complex to be feasible with our existing facilities. As
such, we seek to implement an alternative method. The criterion for the method we wish
to implement is to attain a significant reduction in computational complexity compared to
testing all possible budget splits. We also aim for our method to converge to or close to a
global minimum in the search space, and we aim to be able to escape any local minimum at
which our method may be at risk of getting trapped. By this, we mean that our particles
are unable to navigate away from some local minimum, as they falsely believe it to be a
global minimum of the search space.

5.2 Heuristic Tools

Lee and El-Sharkawi [5, Introduction] set out two advantages of using heuristic tools to
facilitate solving optimisation problems. The first advantage is that compared to alternative
approaches the development time is considerably shorter. This benefit is valuable to our use
case, given the limited time frame we have to develop, implement and analyse our method to
solve the defined optimisation problem. The second advantage is that systems are resilient
to cases of missing or noisy data, and are considered robust. For our optimisation problem,
we do not anticipate missing or noisy data to be a problem, as we are able to generate our
cost data using our defined season simulation subroutine. However, if we wished to adapt
our method in future to a real-world use case, having a robust method that is resilient to
changes in the quality of data available could be considered an advantage. The drawbacks
of heuristic methods include that the solution generated is not guaranteed to be the optimal
solution and that the time required to generate a “near optimal” solution can be large in an
unlucky case [4]. We define a “near optimal” solution to be one within a close tolerance of
the optimal solution. Given that our optimisation problem is one of incomplete information,
where we must make some prediction or assumption about the budget split choices of each
participating team, we consider a heuristic approach as viable despite the lack of a guarantee
that it will converge to the optimal solution for a given set of budget splits. This is because
due to the computational complexity, the exact optimal solution is unfeasible to obtain. In
addition, due to the budget splits of the competing teams being unknown, an exact optimal
solution is unknowable. To illustrate the reason for this choice, consider we are able to
generate the optimal budget split, denoted Oy, of “Team 1” for a given set of n — 1 budget
splits, denoted BS;. Now let us consider that O; may not be the optimal budget split for
any other possible set of n — 1 budget splits, denoted BSs. Now consider that from (12), if
any team can take any one of 95284 budget splits then, by (11), the possible sets of budget
splits, denoted as B.S;, can be calculated as:

-1 284 — 1
n + 9528 . (13)
95284 — 1

If we have n = 11 participating teams we have the following calculation:

(11 —1+95284 -1

—1~1.701-10% 14
95284 — 1 ) ’ (14)

which describes the number of different budget split combinations for the 10 teams that a
given team, “Team 1”7, would have to compete against. It is computationally unfeasible for
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us to consider each possible set of budget splits. As such, we will fix the budget splits of
the competing teams, to be equal to the sample budget split we generated, BS7, and aim
to generate an optimal budget split for “Team 1”.

5.3 Particle Swarm Optimisation Definition

Particle Swarm Optimisation (PSO) is an optimisation method that draws analogies from
the movement of a flock of birds collectively searching for a source of food [6]. To implement
the PSO algorithm, we place some number of particles within the search space of the function
we aim to optimise. Each particle then evaluates the objective function at its current
location. A given particle computes the evaluation of the objective function by passing
its position as the function input, therefore the dimension of our search space must be
equivalent to the arity, ay, of the objective function, g. We denote a particle’s evaluation
of the objective function as its fitness., f Each particle combines aspects of the history of
its current and best fitness, along with random perturbations, in order to determine how it
moves through the search space. Once all particles have moved location the next iteration
begins. Eventually, after some number of iterations, the entire particle swarm is expected
to move close to the optimal fitness value for the objective function [6].

Each individual particle in the swarm is composed of three vectors, each equivalent in
dimension to the search space, thus each having dimension ay. For a particle j, the vectors
are current position, cpj;, best position, ij, and velocity, vj. At each iteration of the PSO
algorithm, we evaluate the current position of each particle, cp;, by passing its position
as input to our objective function and calculating its fitness. If the particle position gives
a better fitness than any position that has been previously evaluated then the position
coordinates are stored in the best position vector, bﬁj. We additionally store the value
of the position attaining the best fitness value so far in a variable that we denote pbest;,
referring to “previous best”, which allows us to compare the best position of a particle across
iterations. We choose new points by adding cp; to vj, where the algorithm adjusts vj for
each particle after each iteration. We update the velocity of a particle, j, as follows [6, 13]:

Vi ¢ W Vi + 17y - (b_ﬁj — cpj) + cora - (pbest; — cPj), (15)

where 71 and ro are random parameters taken from a uniform distribution between 0 and
1. w is the inertia weight coefficient and ¢; and co are acceleration coefficients. A higher
w value allows a particle to be more influenced by its previous velocity, which helps in the
exploration of the global search space, called “global search”. Conversely, a lower value of
w leads to a particle being less reliant on its previous velocity, encouraging local search. cl
determines how much weight the velocity equation places on a particle’s own best position.
c2 determines the amount of weight the velocity equation places on the best position of
other particles in the swarm [8]. We calculate the updated position of a particle j by [13]:

CP; = ¢Pj + Vj, (16)

where the current position of a particle is its previous current position added to its velocity.
We can denote BP as the matrix containing the particle’s best positions, b_pfj7 for all particles
in the swarm, and C'P to be the matrix containing the particle’s current positions, cpj.
Then, Algorithm 1 describes a process for implementing PSO [13, 14]:
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Algorithm 1 Particle Swarm Optimization Algorithm

S« InitSwarm();
fitness < Eval(S)
pbest < S;
BP < best(fitness);
while Stop criterion not reached do
V+—wxV +cyry - (pbest —S) + cara - (BP — S);
S+ S+V;
fitness < Eval(S);
if best(fitness) is better than fitness(pbest) then;
pbest < best(fitness);
end if
if fitness(S) is better than fitness(BP) then;
BP < S;
end if
end while

where InitSwarm() initialises the particles in random initial positions throughout the search
space and with random initial velocities.

5.4 Penatly Function

We consider the case where the budget split of each team competing in the Formula 1
Race Strategy Competition is known. We have set these investment values randomly as
described in Section 4.1, and denote the set of budget splits generated as B.S;. The random
set of budgets we generated as BS; is described in Table 1. To implement PSO, we fix
the known budget splits of each team, “Team ¢”, {i € N | 2 < ¢ < 11}, as they were
initially randomly defined in BS;. We treat the budget split of “Team 1”7 as a variable,
defined by the position of each particle in our swarm. That is, when we evaluate the fitness
of a particle we substitute its current position for the budget split of “Team 1” in BSj,
where all other team’s budget splits remain unchanged. We will denote this updated budget
split list as BS;. Each particle, p, in our swarm takes position [m1;,c1;,e1;], where we
then define ri; = 8 — (my; + c1; + e1;). That is, we denote the position of a particle,
p, as values of marketing, chassis and engine investment. We then define the reliability
investment as 82, such that the sum of all variables always adds up to our budget of 8s.
We recognise that my, + c1, +e1; > 8 = 1y, < 0. So since reliability investment
can not be negative, we consider a particle position, [m1,,c1,,e1;], that sums to greater
than 8 to be non-admissible, as it violates the reliability constraint. Given we have a total
budget of 8, we implement the following bounds for each particle, 0 < my;,¢15,e1; < 8.
We want to increase the likelihood of particles taking an admissible position, that is where
reliability investment is non-negative, 0 < ry,, < 8. So we develop a penalty function, pf, to
increase the value of the objective function, which we seek to minimise, for non-admissible
positions. The penalty function acts only on particles that take a non-admissible position,
that is where 8 < (my; +c1,+e1;). Currently, there are no methods to develop appropriate
penalty functions for constrained optimisation problems other than trial-and-error [12], so
this is the method we use to develop our penalty function, pf. In developing the design of
our penalty function, we aim to guide any non-admissible particles towards an admissible
position. We do this by reducing in size the penalty applied to a non-admissible particle in
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proportion to its distance outside the region of admissibility, where the region of admissibility
is defined by 0 < mq;+c1;+e1; < 8. We define our penalty function on the current position
of a particle, cp; = [ma;,c1;,e1;] as follows:

pf(cBy) = pf ([maj, c1j,e1;]) = (maj +c1j +er; — 8)%, (17)

where the penalty function converts our constrained optimisation problem into an uncon-
strained one, by modifying the objective function in a way we will later describe. Utilising
a penalty function is the most efficient tool that we can implement to solve a constrained
optimisation problem. Alternative techniques include rejecting and repairing generated non-

admissible positions, however, this is a time-consuming process and is often unsuccessful
[10].

5.5 Fitness Function

In defining our objective function we make use of our previously defined season simulation
function, “seasonsim(budgetsplitnew, driverlist, circuitlist)”. We pass as input to our season
simulation the previously defined driverlist and circuitlist data frames, along with setting
budgetsplitnew = BS;. That is, we pass the BS; budget split data frame, altered with the
budget split of “Team 1” set to be the position of particle j. For example if a particle, 7, has
position [1.8,1.2,3.5], we calculate 71 = 8 —mj —c; —e; = 81— 1.8:— 1.20 — 3.50 = 1.51. As
such we would obtain BS; by updating BS; with the position of particle j, and its implied
reliability investment, assigned to “Team 1”7 as shown in Table 2.

Table 2: Shows BS;, in which BS; is updated with the position of particle j.
Team Marketing Reliability Chassis Engine SUM

1 1.8 1.5 1.2 3.5 8
2 1.1 1.9 4.6 0.4 8
3 24 1.7 0.5 3.4 8
4 3 1.8 24 0.8 8
) 2.8 1.6 0.4 3.2 8
6 2.2 1.5 2.1 2.2 8
7 2 1.8 4 0.2 8
8 1.3 1.6 2 3.1 8
9 2.2 1.5 3.4 0.9 8
10 0.4 1.7 24 3.5 8
11 3.5 1.8 1.9 0.8 8

We then calculate the expected value of our cost metric, —metric, by running “season-
sim(budgetsplitnew, driverlist, circuitlist)” some number, s, of times. We calculate the sum
of —metric for each “Team 1”7, and divide this by s to give us the expected value of —metric
for “Team 1”. That is, for a particle , j, at current position, cpj, the objective function is

defined as follows: \

g(cBs) = = > a(BS)), (18)

j=1
where ¢(BS);) is the value of —metric for “Team 17 returned from a single call to the season
simulation function, “seasonsim(budgetsplitnew, driverlist, circuitlist)”, where budgetsplit-
new = BS;. The number of calls to the season simulation function, s, can be considered to
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be a function parameter. Increasing s will improve the accuracy of the objective function
at the cost of increasing the computational complexity. Our implementation of the fitness
function takes place as follows:

By), if0<my e en; <8,
fitness(cp;) = {pf(cpj), HES My, Gy, 615 = (19)

g(cp;),  otherwise.

That is, non-admissible particles take the value of the penalty function, pf, where pf > 0
by definition, Equation (17). The further the distance from the region of admissibility, the
larger the value of pf. Hence non admissible particles have a high likelihood of moving
towards the admissible region over a sufficiently large number of iterations. Admissible
particles take the value of the objective function, g, where g < 0 by definition, Equation
(18). As such, admissible positions will always have a lower fitness value, which we seek to
minimise, than non-admissible positions. This means that given enough iterations, particles
will move towards positions that are admissible and away from positions that are non-
admissible.

5.6 Initial PSO Implementation

Cost Metric
&

0 10 20 30 40 50
Iteration

Figure 3
Cost history for PSO implementation 1, seeking to minimise the cost metric. Algorithm
parameters: ¢l : 1, ¢2: 1, w: 0.9, swarm size: 15 particles, 50 iterations, objective metric
season simulation function calls: 100. Best particle position: [2.73513616, 0.54609236,
3.15448412], lowest fitness: —9.1.

17



12
Particle 1

—— Particle 2
—— Particle 3
—— Particle 4

10

Particle 5
Particle 6
Particle 7
—— Particle 8
Particle 9
— Particle 10
—— Particle 11
' —— Particle 12
—— Particle 13
—— Particle 14
— Particle 15

Absolute Distance

AR

T

W.‘\. i\
\

lteration

Figure 4
Particle movement per iteration for PSO implementation 1. Algorithm parameters: ¢; : 1,
co: 1, w: 0.9, swarm size: 15 particles, 50 iterations, objective metric season simulation
function calls: 100. Best particle position: [2.73513616, 0.54609236, 3.1544841], lowest
fitness: —9.1.

By implementing the PSO algorithm on our generated budget split set, BS7, we aim to
minimise the fitness function, f, which we have defined to be the negative of our satisfaction
metric. To do this, we must select parameters for our PSO algorithm, c1, ¢2 and w, which
we previously defined. We seek parameters that allow the particles to sufficiently explore
the search space, but allow the algorithm to be computed in a reasonable time frame with
the computational resources available. When we have selected parameters we deem suitable,
we will run the code seen in Appendix A to produce an initial run of our PSO algorithm,
alongside associated performance data and figures. The cost metric history of this initial
run of our PSO algorithm is seen in Figure 3, in which we have made a reasoned initial
estimate of the parameters based on our understanding of the domain of the problem which
we will outline as follows. (Shi and Eberhart, 1998) suggest that suitable inertia weight
is dependent on the maximum velocity, V' — maz, of the PSO implementation. Through
analyse of experimental results for a benchmark problem, Shaffer’s F6 function [11], it is
suggested that for good performance, a value of w between 0.8 and 1 is recommended. This
selection of inertia weight is aimed at striking a balance between local and global exploration
of the search space. As such, we hope that it will require a smaller number of iterations,
on average, in order to converge [9]. For ¢; and o we set ¢; = co = 1. We selected these
parameters because for an unconstrained simplified PSO implementation which includes the
inertia parameter w, particle trajectory converges if the following condition holds [8]:

1
1>w>§(61+62)—120, (20)

18



hence our parameter selection satisfies this equation. We choose ¢; = co as particles are
often most effective when ¢; and ¢z coexist with close balance [8]. We note that for functions
including our fitness function, which contains stochastic components, a selection of param-
eters w, ¢; and ¢y, which violate Equation (20) may still lead to swarm convergence, as we
will later discuss. This is because Equation (20) was derived for simplified PSO systems that
do not contain a stochastic component. We select s = 100 in Equation (18) as this gives
a sample size large enough to compute our fitness metric to reasonable accuracy, without
occurring too large of a computational cost. For our iteration number, we considered imple-
menting convergence criteria that would halt our iterations when we judged convergence to
have occurred, by some absolute distance threshold. However, we opted to instead run our
PSO algorithm for a fixed number, 50, of iterations. We do this in order to better compare
the success of different parameter PSO implementations by fixing the computational cost
as equal across implementations.

From the cost history of our initial implementation depicted in Figure (3) we see that
the global best position, [2.73513616, 0.54609236, 3.15448412], is found at iteration 38. To
convert this to a viable budget split for team 1, we first round each coordinate to one
decimal place. r1; = 8 — (my; + c1; + e1,), indicating the best budget split strategy for
“Team 1”7 was found to be [my;,7r1;,c1;,e1,] = [2.72,1.60,0.5¢,3.22]. From Figure (3) we
see that the global best cost metric, which we define as the lowest fitness function value for
any particle across all previous iterations, does decrease as expected. In Figure (4) we have
plotted the absolute distance each particle moves between iterations. We expect that as a
swarm of particles converges, the absolute distance each particle travels should tend to 0.
We can see from Figure (4) that the absolute particle distance travelled between iterations
does not converge. Instead, we can see that the absolute distance moved maintains its high
volatility throughout all 50 iterations, and both the average distance moved and variance in
distance moved both appear to remain constant. This indicates that our parameter values
are two large which makes the velocity, \7j, of a particle j too large. The large velocity
of the particles means that instead of moving closer towards the optimal position, each
particle takes huge steps, often moving a long way past the optimal point they intended to
move towards. This means that from iteration to iteration particles do not converge on the
optimal point, instead they jump wildly from point to point constantly trying to improve
on the global best point. Although this strategy has found a viable position, we will aim to
refine our parameters, w, ¢; and cs. The goal of this is to allow our algorithm to converge
to a global “near optimal” position, which we expect will locate a lower fitness value, and
thus a better budget split strategy for “Team 17.

5.7 Analysis

In order to refine our parameter choices, we decided to run a series of performance tests in
which we implemented our particle swarm optimisation function for different combinations
of parameter choices. Due to the computational cost of running our PSO implementation, we
were unable to generate large samples of PSO implementations for any one set of parameter
values. Instead, we ran initial tests for a range of parameter combinations and validated
successful parameter choices by generating a small sample of implementations. Although
this is a limitation as our method does not give us accurate insight into the level of variance
that may occur between PSO implementations of the parameters, it does give us a higher
confidence in our observations compared to only considering a single instance.

The second instance of parameter values we will analyse are w = 0.42, ¢; = 0.3 and
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Cost history for PSO implementation 2, seeking to minimise the cost metric. Algorithm
parameters: cl :0.18, ¢2: 0.3, w : 0.42, swarm size: 15 particles, 50 iterations, objective
metric season simulation function calls: 100. Best particle position: [1.79255206,
2.81055583, 1.86159528], lowest cost: —7.76.

co = 0.18, in PSO implementation 2. Across a small sample of 5 performance tests, this set
of parameter values consistently demonstrated a global best cost metric that appeared to
converge and critically the iteration-wise distance between particles also converged to close
to 0 across all tests. Figure 5 shows the cost metric history for a single PSO implementation
taken from our sample. From Figure 5 we can see the cost history decreases across a larger
number of steps than our previous implementation, before converging to a minimum at
iteration 23. The minimum cost found by this implementation was 7.76. Figure 6 shows
the iteration-wise absolute distance a particle moves. The figure shows that the absolute
distances converge close to 0 at around iteration 23 which is when the lowest cost metric
value was found, as we would expect. This implies that the particles became stuck in either
a local or global minimum at iteration 23. Given that our first implementation found a
lower cost metric, —9.1, at position [2.73513616, 0.54609236, 3.15448412] we know that our
implementation shown in Figure 5 can not have found or be close to a global minimum.
It must follow that the convergence in Figure 6 is to a local minimum, from which the
particles have been unable to escape. This is not unexpected, as in this implementation
c; = 0.18 < 0.3 = ¢3. From Equation 15 we can see that when ¢; < c¢o, particles are
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Figure 6

Particle movement per iteration for PSO implementation 2. Algorithm parameters:
cl:0.18, ¢2: 0.3, w: 0.42, swarm size: 15 particles, 50 iterations, objective metric season
simulation function calls: 100. Best particle position: [1.79255206, 2.81055583,
1.86159528], lowest cost: —7.76.

more attracted to the global best position than their only personal best position. This is
more likely to lead to premature convergence to a local minimum, as opposed to particles
being encouraged to explore the search space [7, 8]. We address this premature convergence
in PSO implementation 3 by adjusting our parameters such that ¢; > co. We shall fix
w = 0.42, as we have seen that this inertia weight was successful in attaining convergence
of our swarm.

We take w = 0.42, ¢; = 0.18 and ¢; = 0.3 for our PSO implementation 3. Across a
small sample of 5 performance tests, this set of parameter values consistently demonstrated
a global best cost metric that appeared to converge and the iteration-wise distance between
particles also converged to close to 0 across all tests. Additionally, this implementation
found on average lower cost metric values than PSO implementations 1 and 2. A single
implementation taken from the sample is shown in Figure 7, in which we see that the cost
metric value converges very quickly, with the lowest metric, —11.49, being obtained at posi-
tion [2.96819077, 0.05462524, 3.31977874], at iteration 10. The much quicker convergence of
PSO implementation 3, compared to previous implementations, suggests that this may also
be a local minimum and that the particles have not sufficiently explored the search space.
However, by obtaining a cost metric of —11.49, much lower than in implementations 1 and
2, it is plausible that implementation 3 was able to find a global minimum much quicker,
and thus also converge quicker. The absolute distance particles moved per iteration, shown
in Figure 8, does provide evidence for the latter explanation. Figure 8 shows that not all
particles converge to travel an absolute distance of close to 0 between iterations until around
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Figure 7
Cost history for PSO implementation 3, seeking to minimise the cost metric. Algorithm
parameters: cl : 0.3, ¢2:0.18, w : 0.42, swarm size: 15 particles, 50 iterations, objective
metric season simulation function calls: 100. Best particle position: [2.96819077,
0.05462524, 3.31977874], lowest cost: —11.49.

iteration 13. We see that 3 particles were still exploring the search space when the lowest
cost metric was found at iteration 10. However, it is true that 3 particles are unlikely to
be a large enough swarm to locate a global minimum, and it is likely that these particles
were still moving at iteration 10 because they were the furthest away from the minimum
that they were travelling to converge to. Another possibility is that the variance in our
objective function exaggerated the fitness score of the optimal position. To analyse this,
we first find the budget split strategy associated with the particle’s global best position at
[2.9¢, 1.62, 0.12, 3.41] = [my, 1,1, e1]. We then calculate the expected cost metric, —metric,
for s = 1000 in Equation (18), for the budget split set we shall denote B.S3. Increasing the
sample size, s, gives us a more accurate expected value of —metric, as seen in Table 3.
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Particle movement per iteration for PSO implementation 3. Algorithm parameters:
cl:0.3, ¢2:0.18, w: 0.42, swarm size: 10 particles, objective metric season simulation
function calls: 100. Best particle position: [2.96819077, 0.05462524, 3.31977874], lowest

cost: —11.49.

Table 3: Shows B.S3 and the associated expected cost metric, —metric, where s = 1000.

Team Marketing Reliability —Chassis Engine —metric

1 1.8 1.5 1.2 3.5 -8.485
2 1.1 1.9 4.6 0.4 -0.902
3 2.4 1.7 0.5 3.4 -7.766
4 3 1.8 2.4 0.8 -7.771
5 2.8 1.6 0.4 3.2 -8.315
6 2.2 1.5 2.1 2.2 -5.013
7 2 1.8 4 0.2 -9.386
8 1.3 1.6 2 3.1 -1.597
9 2.2 1.5 3.4 0.9 -5.135
10 0.4 1.7 2.4 3.5 -0.072
11 3.5 1.8 1.9 0.8 -4.558

We see from Table 3 that the expected —metric value for “Team 1”7 is -8.485 from our
sample of s = 1000 calls to the season simulation function. This is much less than the global
minimum value obtained in PSO implementation 3. We can determine from this that it is
very likely that the global best strategy in PSO implementation 3 was exaggerated due to
variance. This suggests that our method could be improved by increasing the number of
calls to the season simulation function within our PSO implementation. However, the global
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best strategy obtained in PSO implementation 3, [2.9¢, 1.62, 0.12, 3.41] = [my,c1,¢1,€1], is
shown in Table 3 to have the minimum value of —metric across all n = 11 participating
teams. So although this strategy is unlikely to be the global optimal, it is still expected
to be a strategy that would leave us more satisfied than any other team in the long run as
judged by our metric.

6 Discussion

In this paper, we have demonstrated the applications of a season subroutine for understand-
ing the Formula 1 Race Strategy Competition [1] problem dynamics. We have shown that
the expected points distribution of a random sample of teams can vary significantly in width
and distribution dependent on team budget strategy. Interestingly, we observed that the
most competitive and effective strategies we were able to produce only possessed relatively
small statistical advantages over competing teams. The implication of this is that while
superior strategies can be obtained, success in any one season of the Formula 1 Competition
is predominantly down to luck. We noted that the DNF probability draw and the driver
allocation components were the competition features that caused variance in the season
simulation function, given that we ignored other random effects. Overperformance relative
to investment in both the driver allocation process and the number of driver DNFs had very
significant effects on team performance in terms of expected points and the expected value
of —metric.

Our decision to aim to optimise a team’s budget split assuming we knew the budget
splits of competing teams had significant benefits. We were able to reduce an element
of problem complexity while still delivering a method that is able to obtain competitive
budget split strategies. In addition, if we are able to obtain past strategy data that we deem
relevant to the current Formula 1 Season Competition, we could improve the accuracy of our
optimisation model by attempting to predict the budget split of competing teams. Beaume
(2022) demonstrates this successfully using artificial intelligence [1]. The drawback of our
decision is that if the randomly generated set of budget splits, BS7, differs significantly from
the actual budget split set then it is likely to have a large impact on our optimal strategy.
For further research, we would benefit from undertaking an analysis of the variance in the
cost metric, —metric of our optimal strategy when it is tested against differing budget split
sets. The difficulty in undertaking this analysis is that the search space of possible budget
split sets is so large, it is not feasible to consider all or even the most possible sets. Instead,
we would have to rely on the results for some small sample being representative of the whole
space.

Our design and implementation of a penalty function, pf, allowed us to remove the vari-
able sum constraint from our problem. Additionally, we showed that it successfully moved
non-admissible particles towards and into admissible positions. Reducing the dimension of
our optimisation problem by defining r;; = 8 — (my jteijter j) allowed us to ensure that
all admissible particles used the entire 8 budget. This made our optimisation more efficient,
as the computational cost was not wasted on particles that did not use the entire budget and
so could not be optimal. The success of our particle swarm implementation demonstrates
that it is an effective technique for applying to constrained optimisation problems when
coupled with a suitable penalty function [12]. We have shown that w = 0.42 resulted in
a convergence of particles within 50 iterations, whereas w = 0.9 did not. In addition, we
saw that values of ¢; = 0.3 and ¢y = 0.18 resulted in the lowest obtained values of our cost
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metric. However, we identified a significant drawback in our PSO method. The variance in
our fitness function when we set s = 100 resulted in inaccurate global best positions. To
address this would require increasing our computational resources, or to reduce the number
of iterations or particles in our swarm. Alternatively, we could attempt to better optimise
our season simulation function by reducing its complexity. Despite our issue with fitness
function variance, we obtained a competitive strategy for “Team 17, [2.92, 1.6¢, 0.12, 3.4¢] =
[m1,c1,c1,e1], which we found to have the lowest expected metric value, —metric, compared
to every team competing in BS].
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A Python Program: PSO Implementation

A Python program defining the season simulation function and particle swarm optimisation
implementation.

2

4

30

40

46

from decimal import Decimal

from time import perf_counter

import random

import math

import pandas as pd

import numpy as np

budgetsplitl = pd.read_excel(r’C:/ Users/New/OneDrive/Documents/
S4BudgetAllocationcopy . xlsx )

# Driver list to be imported in order from highest to lowest skill

driverlist = pd.read_excel(r’C:/Users/New/OneDrive/Documents/S4Driverscopy .
xlsx )
circuitlist = pd.read_excel(r’C:/Users/New/OneDrive/Documents/S4Circuits.xlsx

")

# Define season simulation function

def seasonsim (driverlist , budgetsplit, circuitlist):
# function to return chasis investment of a team
def chasisfinder (team):
for i in range(len(budgetsplit.Team)):
if team == 7team{0}”.format (budgetsplit.Team[i]) :
return budgetsplit.Chasis [i]

# function to return engine investment of a team
def enginefinder (team):
for i in range(len(budgetsplit.Team)):
if team = "team{0}”.format(budgetsplit.Team[i]) :
return budgetsplit.Engine[i]

# function to return reliability investment of a team
def reliabilityfinder (team):
for i in range(len(budgetsplit.Team)):
if team = "team{0}”.format(budgetsplit.Team[i]) :
return budgetsplit.Reliability [i]
## Driver Allocation

# Define dictionary to contain marketing budget "4 for each team

team4marketing = {}

# Calculate marketing budget "4 for each team

for x in range(len(budgetsplit.Marketing)):

team4marketing [”team{0}” . format (x+1)] = Decimal(str (budgetsplit.

Marketing [x]) ) **4

# list of team marketing budgets =~ 4

team4marketing_list = []

for x in range(len(budgetsplit.Marketing)):
team4marketing_list.append(team4marketing [”team{0}” . format (x+1)])

# dictionary to contain driver probability
driverprobability = {}
# Assign each driver a probability in [0,1) from a unifrom distribution
for x in range(len(driverlist.Skill)):
driverprobability [?{0}” .format(driverlist.Driver[x])] = random.uniform
(0,1)

# Define dictionary to contain team driver assignment results
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60

64

66

80

88

90

94

96

100

102

teamdrivers = {}

# Assign each driver to a team based on driverprobability
for x in range(len(driverlist.Skill)):
# Define relevant lists and dictionaries
team4marketing_inplay = []
teamprobability = {}
teamprobability_-list = []
teamname_list = []
# Check if team has 2 drivers allocated ,
# Append its marketing budget ~ 4 to list if not
for i in range(len(budgetsplit.Team)):
if "team{0}”.format(i+1) in teamdrivers:
if len(teamdrivers[”team{0}”.format(i+1)]) > 1:
continue
team4marketing_inplay .append (team4marketing [”team{0}” . format (i+1)])
for i in range(len(budgetsplit.Team)):
if 7team{0}”.format(i+1) in teamdrivers:
if len(teamdrivers[”team{0}”.format(i+1)]) > 1:

continue
# Assign probabilites to dictionary and list , and available team names
to list
if sum(team4marketing_inplay) != 0:

teamprobability ["team{0}” .format(i+1)] = (team4marketing_list[i]) /sum

(team4marketing_inplay)
else:
teamprobability ["team{0}” . format (i+1)]
team4marketing_inplay))
teamprobability_list.append(teamprobability [”"team{0}” . format (i+1)])
teamname_list . append (”team{0}” . format (i+1))

1/Decimal (len (

# Use new variable j to assign drivers based on probability rule defined

for j in range(len(teamprobability_list)):
if driverprobability [driverlist.Driver[x]] <= math.fsum (
teamprobability_list [0:j+1]):
if teamname_list[j] in teamdrivers:
if len(teamdrivers[str(teamname_list[j])]) > 1:
continue
clge s
teamdrivers [teamname_list [j]]. append(driverlist.Driver [x])
break
else:
teamdrivers [teamname_list [j]] = [driverlist.Driver[x]]
break

##Season Simulation

# function to return assigned team of a driver
def teamfinder (driver):
for key, value in teamdrivers.items():
for i in range(2):
if driver = value[i]:
return key

# Season Simulator
# define dictionary to contain rank of each driver for each circuit
circuitrank = {}
for j in range(len(circuitlist.Circuit)):
# Define dict. to contain laptimes, circuittime and if a driver DNF
laptimes = {}
circuittime = {}
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116

130

136

140

146

150

160

# Loop through each driver to calculate lap time
for x in range(len(driverlist.Driver)):
# Assume setup is 0
# Define variables used in tperf formula
Driving = Decimal(driverlist. Skill [x])
Chasis = Decimal(chasisfinder (str(teamfinder(driverlist.Driver[x]))))
1))

Engine = Decimal(enginefinder (str(teamfinder(driverlist.Driver[x]))
circuitdriver = Decimal(float (circuitlist.Driver[j]))
circuitchasis = Decimal(float (circuitlist.Chasis[j]))
circuitengine = Decimal(float (circuitlist.Engine[j]))

# lap time model, based on tperf and tbase.
tperf = Decimal(—0.15)*(3%(circuitdriver*Driving+circuitchasis*Chasis+
circuitengine*Engine)) /(circuitdriver+circuitchasis+circuitengine)
# Add laptime to dict.
if 7{0}”.format(driverlist.Driver[x]) in laptimes:
laptimes ["{0}” .format (driverlist.Driver [x]) |.append(tperf +
circuitlist .Base[]])
continue
else:
laptimes [?{0}” .format (driverlist.Driver[x])] = [tperf 4+ circuitlist.
Base [ ]]
continue
# Calculate if a driver DNF, append this to DNFtracker
for y in range(len(driverlist.Driver)):
randomDNFprob = Decimal (random . uniform (0,1))
reliabilityprob = Decimal(((1—math.erf(Decimal(reliabilityfinder (str (
teamfinder (driverlist . Driver[y]))))*Decimal (0.9)—Decimal (1.5)))*x2) /4)
if randomDNFprob < reliabilityprob:
if 7{0}”.format(driverlist.Driver[y]) in circuitrank:
circuitrank [driverlist.Driver[y]]. append (?DNF”)

continue
else:
circuitrank [driverlist .Driver[y]] = [?DNF”]
continue
# If not DNF, calculate circuit time
else:
circuittime [7{0}”.format(driverlist.Driver[y])] = math.fsum(laptimes |

7{0}” .format(driverlist.Driver[y])])
# rank finishing drivers by circuit time
circuitranklist = sorted(circuittime.items (), key=lambda item: item[1])
for m in range(len(circuitranklist)):
if 7{0}”.format (circuitranklist [m][0]) in circuitrank:
circuitrank [ {0}” . format (circuitranklist [m][0]) ].append(int (m+1))
continue
ellisiex:
circuitrank [7{0}”.format (circuitranklist [m][0])] = [m+1]
continue

# Driver point allocator , based on 14 teams — alter when number of teams

known :

# 10pts, 8pts, 6pts, Hpts, 4pts, 3pts, 2pts, 1lpt.

driverpoints = {}
for x in range(len (circuitrank)):

driverpointslist = 0
for y in range(len(circuitlist.Circuit)
if circuitrank [driverlist.Driver[x]]]
driverpointslist 4= 25
continue

)
yl = 1:
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elif circuitrank[driverlist.Driver[x]][y] = 2:

162 driverpointslist 4= 20
continue
164 elif circuitrank [driverlist.Driver[x]][y] = 3:
driverpointslist 4= 16
166 continue
elif circuitrank [driverlist.Driver[x]][y] = 4:
168 driverpointslist 4= 13
continue
170 elif circuitrank [driverlist.Driver[x]][y] = 5:
driverpointslist 4= 11
172 continue
elif circuitrank [driverlist.Driver[x]]|[y] = 6:
174 driverpointslist 4= 10
continue
176 elif circuitrank [driverlist.Driver[x]][y] = T:
driverpointslist += 9
178 continue
elif circuitrank [driverlist.Driver[x]][y] = 8:
180 driverpointslist 4= 8
continue
182 elif circuitrank[driverlist.Driver[x]][y] = 9:
driverpointslist += 7
184 continue
elif circuitrank [driverlist.Driver[x]][y] = 10:
186 driverpointslist += 6
continue
188 elif circuitrank[driverlist.Driver[x]][y] = 11:
driverpointslist 4= 5
190 continue
elif circuitrank[driverlist.Driver[x]][y] = 12:
192 driverpointslist 4= 4
continue
194 elif circuitrank [driverlist.Driver[x]][y] = 13:
driverpointslist += 3
196 continue
elif circuitrank [driverlist.Driver[x]][y] = 14:
198 driverpointslist 4= 2
continue
200 elif circuitrank[driverlist.Driver[x]][y] = 15:
driverpointslist 4= 1
202 continue
204 driverpoints [driverlist.Driver[x]] = [driverpointslist ]
206 sorteddriverpoints = sorted(driverpoints.items (), key=lambda item: item|[1],
reverse = True)

208 # Team point allocator

210 teampoints = {}
for i in range(len(sorteddriverpoints)):
212 if teamfinder (sorteddriverpoints[i][0]) in teampoints:
teampoints [teamfinder (sorteddriverpoints[i][0]) ].append(
sorteddriverpoints [i][1])

214 else:
teampoints [teamfinder (sorteddriverpoints [i][0])] = [sorteddriverpoints |
i][1]]
216
teampointssum = {}
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236

240

260

264

266

268

for i in teampoints:
teampointssum [i] = [teampoints[str(i)][0][0] + teampoints|[str(i)][1][0]]

sortedteamsum = sorted (teampointssum.items (), key =lambda item: item|[1],
reverse = True)
sortedteammetric = {}
count = 1
for i in sortedteamsum :
if count = 1:
sortedteammetric[i[0]] = [32]
count +=1
continue
elif count — 2:
sortedteammetric[i[0]] = [16]
count 4= 1
continue
elif count =— 3:
sortedteammetric[i[0]] = [4]
count 4+= 1
continue
elif count — 4:
sortedteammetric[i[0]] = [2]
count 4+= 1
continue
elif count = 5:
sortedteammetric[1[0]] = [1]
count +=1
continue
else:
sortedteammetric[i[0]] = [0]
continue

return(sorted (sortedteammetric.items (), key =lambda item: item[1l], reverse
= True))

def expectedpointfunction (numberofsims, budgetsplit_current):
totalpoints = {}
expectedpoints = {}
simscount = numberofsims
for i in range(simscount):
currentseason = seasonsim (driverlist , budgetsplit_current , circuitlist)
for i in range(len(currentseason)):
if currentseason[i][0] in totalpoints:
totalpoints [currentseason[i][0]]. append(currentseason|[i][1])
else:
totalpoints|[currentseason[i][0]] = [currentseason[i][1]]
for i in range(len(totalpoints)):
expectedpoints ["team{0}” . format (i+1)] = sum(sum(totalpoints [”team{0}”.
format (i+1)] ,[]) )/simscount
epsorted = sorted(expectedpoints.items (), key =lambda item: item[1],
reverse = True)
return (epsorted)

def expectedpointfunctionl (numberofsims, budgetsplit_current):
totalpoints = {}
expectedpoints = {}
simscount = numberofsims
for i in range(simscount):
currentseason = seasonsim (driverlist , budgetsplit_current , circuitlist)
for i in range(len (currentseason)):
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274 if currentseason[i][0] in totalpoints:
totalpoints [currentseason[i][0]]. append(currentseason[i][1])
276 else:
totalpoints [currentseason[i][0]] = [currentseason[i][1]]
278 for i in range(len(totalpoints)):
expectedpoints [?team{0}” . format (i+1)] = sum(sum(totalpoints [”team{0}” .
format (i+1)],[]))/simscount
280 return (expectedpoints [”teaml” |)

282 budgetsplitcopy = budgetsplitl
# particle in form [marketing, reliability , chasis, engine]
284 # team should be number in range [1, n]
# Changing values of team 1 to be updated values in budgetsplitcopy
256 def changebudgetsplit(particle):
# Assign particle values to the team

288 reliabilityparticle = max(0,8 —sum(particle))
particlel = [particle [0], reliabilityparticle , particle[1], particle [2]]
290 budgetsplitcopy .loc [budgetsplitcopy [?Team”] = 1, [”Marketing”, ”
Reliability”, ”Chasis”, "Engine”]] = particlel

return budgetsplitcopy

## PSO
294

import pyswarms as ps
296

# PSO Parameter Adjustment

205 options = {
7cl”: 0.3,

300 7c2”: 0.18,
"w”: 0.42,

302 }

# val 1 = marketing, val 2 = reliability , val 3 = chasis, val 4 = engine
304 # particle fitness

def fitness(values):
306 if sum(values) > 8:

points = —((sum(values)—8)*x%2)
308 else:

points = expectedpointfunctionl (150, changebudgetsplit(values))
310 return —points # negative as we seek to minimise

312 # swarm fitness

deiRCar
314 n_particles = x.shape[0]
j = [fitness(x[i]) for i in range(n_particles)]
316 return np.array(j)

318 # Define the bounds of the variables
bounds = (Oxnp.ones(3) ,8«np.ones(3))

ps.single.GlobalBestPSO . maximize = True
322 # Create an instance of the pyswarms.single.GlobalBestPSO class
optimizer = ps.single.GlobalBestPSO(n_particles=15, dimensions=3, options=
options , bounds=bounds)

# Run the optimization and get the best solution found
326 t1 = perf_counter ()

best_score, best_values = optimizer.optimize(f, iters=50)

t2 = perf_counter ()
330 # Print the best solution found
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print (”Best values:”, best_values)

print (" Best score:”, best_score)

332 print (7 Elapsed time during the whole program in seconds:”,
t2—t1)

336 import matplotlib.pyplot as plt

plt .rcParams. update ({
338 ’font . family ’: 7 serif”

”font.size”: 10

340 })

from pyswarms. utils.plotters import (plot_cost_history , plot_contour,
plot_surface)
sa2 fig = plt.figure ()
plt.plot (optimizer.cost_history)
344 plt.xlabel (’Number of Iterations’)
plt.locator_params (axis="x”, integer=True)
346 plt.ylabel(’Objective Metric’)
plt .show ()

print (seasonsim (driverlist , budgetsplitl, circuitlist))
350 # Assume optimizer is an instance of PSO class

352 ## 3d plot of all iterations

354 # run the PSO algorithm and store the position history
pos_history = optimizer.pos_history

# convert the position history list into a NumPy array
355 pos_history = np.array (pos_history)

360 # plot the position history in 3D
fig = plt.figure ()
362 ax = fig.add_subplot (111, projection=’3d")
for i in range(pos_history.shape[1l]):
x = pos_history [:, i, 0]
y = pos_history [:, 1, 1]
z = pos_history[:, 1, 2]
ax.plot(x, y, z, ~o’, label=f"Particle {i}”)
365 ax.legend ()
ax.set_xlabel (’X")
370 ax.set_ylabel ('Y")
ax.set_zlabel (’Z7)
372 ax.set_title (’Position history of the swarm’)
plt .show ()

364

366

## 3d plot at given iteration
376 # run the PSO algorithm and store the position history
pos_history = optimizer.pos_history

# convert the position history list into a NumPy array
350 pos_history = np.array(pos_history)

382 # specify the iteration number
iterlist = [0]

# plot the particle positions at the specified iteration
ss6 for j in iterlist:
fig = plt.figure()
388 ax = fig.add-subplot (111, projection=’3d")
for i in range(pos_history.shape[1l]):

33



390

392

394

396

398

4100

102

104

106

108

110

130

436

140

444
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x = pos_history[j, i, O]
y = pos_history[j, i, 1]
z = pos_history[j, i, 2]
ax.scatter (x, y, z, label=f”Particle {i+1}”)
ax.legend ()
ax.set_xlabel (’Marketing ’)
ax.set_ylabel (’Chassis’)
ax.set_zlabel (’Engine’)

ax.set_title (f’Particle positions at iteration {j}’)

ax.set_box_aspect ([1,1,1])

ax.legend (bbox_to_anchor=(1.05, 1), loc="upper left’)
plt .show ()

# same fig

fig , axes = plt.subplots (1, 3, figsize=(15, 5), subplot_kw={’projection’

b

lines = []

for i, j in enumerate(iterlist):
for k in range(pos_history.shape[l]):
x = pos-_history [j, k, O]
y = pos_history [j, k, 1]
z = pos_history[j, k, 2]
line = axes[i].scatter(x, y, z, label=f”Particle {k+1}")
if i = 0: +# add each particle to the lines list only once
lines .append(line)

axes[i].set_xlabel (’Marketing’)
axes|[i].set_ylabel(’Chassis’)

axes[i].set_zlabel (’Engine’)

axes[i].set_title(f’Particle positions at iteration {j}’)
axes[i].set_box_aspect ([1, 1, 1])

fig.legend (handles=lines , labels=[l.get_label() for 1 in lines],
bbox_to_anchor=(1.05, 0.5), loc=’center right’)

plt.tight_layout ()
plt .show ()

# animation

import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D

2> import numpy as np

import matplotlib.animation as animation
from matplotlib.animation import FuncAnimation
import seaborn as sns

pos_history = optimizer.pos_history
pos_history = np.array(pos_history)

fig = plt.figure ()

ax = fig.add-subplot (111, projection=’3d’)
ax.set_xlabel (’X")
ax.set_ylabel ('Y")
ax.set_zlabel (’Z")
ax.set_box_aspect ([1, 1, 1])

def animate(i):
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160
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164

466

468

170

ax.clear ()

for j in range(pos_history.shape[1l]):

x = pos_history [:i, j, O]
y = pos_history [:i, j, 1]
i

z = pos_history [:i, j, 2]
ax.plot(x, y, z, —o’, label=f"Particle {j}”)
ax.set_title (f’Particle positions at iteration {i}’)
ax.legend (loc="center left’, bbox_to_anchor=(1, 0.5))
ani = FuncAnimation(fig , animate, frames=pos_history.shape[0],
plt .show ()
num_particles = len(pos_history [0])
num_iterations = len(pos_history)

# initialize the distances array
distances = np.zeros((num-_particles,

# calculate the absolute distance for

for i in range(num-iterations—1):
for j in range(num_particles):

num_iterations —1))

interval=500)

each particle between each iteration

distances[j, i] = np.linalg .norm(pos_history [i+4+1][j] — pos-history [i

1051

# create a Seaborn line plot showing how the absolute distance changes for

each particle
sns.set (style="whitegrid )
plt.figure(figsize=(10,6))
for i in range(num-_particles):

plt.plot(distances[i], label=f’Particle {i+1}’)

plt.xlabel (’Iteration’, size = 12)
plt.ylabel (’Absolute Distance’, size
plt.legend ()

plt .show ()

= 12)
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