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Abstract

Background:

Missing data occurs frequently in data collection, especially in medical research. Often the
impact of overlooking this missing data is underestimated. Methods for coping with missing
values in a data set have recently become available to medical researchers. This study aimed to
investigate such methods and carry out an analysis on a data set with missing values, concerning
abdominal aortic aneurysm (AAA) surgery. The required outcome was a logistic regression
model for whether or not subjects survived the AAA surgery.

Research & Study:

Research into each of the methods was carried out, using mainly journal articles, but also books.
The books provided a useful introduction to new topics, whereas the journal articles provided
more detailed information required for a deeper understanding. Definitions were given for the
missingness mechanisms and explanations were given for the methods available for data with
missing values. Small examples were given with the theory and then these ideas were applied to
a larger data set to compare the methods under the different missingness mechanisms. Finally,
the more complicated AAA surgery data set was analysed with an appropriate method and the
logistic regression model obtained.

Results:

The data set contained 14010 subjects, with the missing values assumed to be missing at random,
MAR. Multiple imputation was selected as the method for the data set, with different imputation
methods selected for the different types of data; numerical, binary and categorical. The imputed
values were concluded to be satisfactory and the logistic regression model produced, showing
the impact of the predictors on the outcome of mortality.

Conclusion:

There are different missingness mechanisms and methods for coping with missing data. These
methods have certain circumstances in which they would be most useful. Care should be taken
when dealing with missing values to try to avoid bias in the results or loss of information. For
the AAA surgery data set, multiple imputation proved to be the most suitable method.
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Chapter 1

Introduction

The study will investigate missing data and the different methods which are available to cope
when data are missing. Missing data are unavoidable in clinical research and epidemiological
studies and can often lead to invalid results, (Sterne et al, 2009). Missing data can occur for a
number of different reasons. A value may be missing if the subject does not wish to disclose the
information, such as household income, or it may be missing if the person is no longer available,
for example if they have left the country. The reasons for the data being missing lead to different
types of missing data, which will be investigated. Whatever the reasons for the missing data,
it cannot be ignored from the analysis stage, since this can lead to bias in the results, (Sterne
et al, 2009). Statistical methods have only recently become available to medical researchers to
help tackle problems associated with missing data, (Sterne et al, 2009). There are now many
different method available and some of these will be considered during this study.

Chapter 2 will introduce the main data set used during this study and provide basic sum-
maries concerning any missing values in this data. Chapter 3 will outline some theory relating
to missing data. It will introduce a small data set to help explain the theory, which includes dif-
ferent types of missing data and a variety of different methods which can be used to cope with
data sets with missing values. Next, chapter 3 will introduce a package which is available in the
statistical software R, which has been designed to implement some of the missing data meth-
ods. Chapter 4 contains a large data set and investigates how well the different methods cope
with the different types of missing data. As the theory has now been introduced and smaller or
simpler examples have been demonstrated, the main data set from chapter 2 returns in chapter
5 to be investigated and the missing data dealt with. Chapter 5 includes graphical summaries of
the missing data, an appropriate method for handling the missing data and finally the results of
the analysis. Lastly, conclusions are given and the appendices holds any additional information
such as the R statistical software commands used.
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Chapter 2

Abdominal Aortic Aneurysm (AAA)
Surgery Data

The main data set being used during this project is concerning subjects who have undergone
Abdominal Aortic Aneurysm (AAA) surgery. The outcome of interest is whether or not the
subject survives the procedure. There are 14010 subjects in total and 23 variables recorded. Of
these 14010 subjects, only 1964 are complete cases, that is, the subject has a recorded value for
each of the 23 variables. The remaining subjects have a value missing from at least one of the
23 variables. These missing values will be the focus of this study. Smaller and more simple data
sets will be used to help explain new methods as they are introduced. However, the aim of the
study is to consider the missing values within this data set.

Various different methods for dealing with missing data will be considered. One will be
chosen as the most appropriate method and used to create a regression model for this data set,
with the outcome being whether or not the subject survives the surgery. This model can then be
used to assess the risk involved for future patients considering AAA surgery, and highlight which
variables are important in increasing or decreasing the chances of survival during the surgery.
The outcome variable is called the ‘dischargeStatus’ and takes a value of 0 for ‘survived’ and 1
for ‘died’. These steps can be found in chapter 5.

2.1 Explanation of the Data and Basic Summaries

The 23 variables are shown in table 2.1, along with a brief explanation. The first 15 variables
are categorical, with the majority having simply yes/no answers. Table 2.2 shows the number of
subjects in each of the categories for all of the categorical variables. It can be seen that there are
a number of NA values, these represent the missing values for each of the variables.

Table 2.3 shows the odds ratios for the binary categorical variables against the outcome of
death. It was not taken into account where the subject died, simply whether they did or did not
survive. If the missing values had been included in these calculations, they may have affected
these odds ratios. In some cases, the missing values could cause the odds ratios to change from
above/below one to below/above one. Recall that an odds ratio of one suggests that those with,
say, diabetes have the same odds of death as those without diabetes. The missing values, if
added, could therefore affect whether this variable increases or decreases the subjects chances
of survival after surgery.
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The final 8 variables are continuous, but with maximum and minimum plausible values.
Table 2.4 shows the upper and lower clinically plausible limits for each of the continuous vari-
ables. The units used are those given in table 2.1. Therefore, subjects with values which lie
outside these boundaries, will be edited to NA for the relevant variables. This is so they can still
be included in the analysis. Reasons for values outside of these boundaries may include;

• Data entry errors,

• Incorrect codes, such as entering ‘0’ when ‘NA’ should be entered,

• Incorrect units used, for example, centimetres instead of millimetres.

Table 2.5 shows the upper and lower data values for each of the continuous variables. It
can be seen that many of the variables have values outside the clinically plausible limits. The
final column in table 2.5 shows the number of subjects with a value for that variable which lies
outside the clinically plausible limits in table 2.4. It can be seen that these restrictions affect
between 157 (1.1%) and 324 (2.3%) subjects for each of the continuous variables. Therefore,
there are many subjects which need to be changed to NA for these variables. Note that for the
age variable, the lowest value is -53. There were many recordings for age with a negative value,
which may be a data entry error, whereby the number of years is correct, but the sign is incorrect.
However, as this is only a suggestion, these negative values must be set to NA.

Finally, table 2.6 shows each of the variables along with how many missing values (NA)
they have and the corresponding percentage of missing values. Recall that the data set contains
14010 subjects. It can be seen that the percentage of missing values for any one variable with
any missing, ranges from 7.1 × 10−3% for gender to 67.3% for stroke. Note there are no
missing values for hospitalID. It is likely that the figure is so high for variables such as stroke
and haemorrhage, as some hospitals or physicians may not record a value when the answer is
‘no’. Therefore, some of the missing values may be those without a haemorrhage or without a
stroke, but nothing was recorded for the subject, rather than a value of ‘0’.

2.1.1 Data Input Adjustments

There were some amendments which needed to be made to the raw data before it could be used.
Some of these are listed below.

• The subjects were provided on every other line of a spreadsheet, which resulted in twice as
many values being read into R. The blank spaces were interpreted as additional missing
values. Therefore, these blank rows needed to be deleted before the data could be read into
R. As deleted rows in spreadsheets are never truly removed, a new spreadsheet needed
to be produced by copying and pasting the original data, once every other row had been
deleted.

• The gender variable had values recorded in seven different ways. These were: f, Female,
F, and F(space) for women and M, Male and m for men. Therefore, R was showing seven
different categories for gender. Therefore, f, Female and F(space) were changed to F and
m and Male were changed to M. Therefore, two categories resulted, namely F and M.

• There was one subject with a blank cell for gender, so this was coded to NA.

• The admission mode variable had only blank spaces for the missing values, so these were
changed to NA for continuity in the data set.
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• As previously mentioned, the status variable was simplified to 0=alive and 1=died. There-
fore, where the subject died was not taken into consideration.

• There were also six categories amongst the categorical variables which were not specified
in the description of the data set. For example, there were some subjects with an admission
mode in a category 4, which is not listed. These were therefore followed up to see what the
categories were, so the data could be interpreted correctly. However, no information was
available for these missing categories, hence they had to be edited to NA also. It is likely
that these additional categories are codings within say, a certain hospital or region. It can
be seen from figure 2.1 that, for example, the admission mode categories 0, 3,4 and 4,
which are not listed, only affect three of the 132 hospitals. It is therefore likely that these
codes were used only within these hospitals. Previously, hospital staff could record data,
such as admission mode, more freely, hence ‘new’ categories could be formed. However,
now the categories are recorded on computer systems, using a drop-down box, and so
only the listed categories can be chosen. It is therefore likely that the admission modes 0,
3,4 and 4 were not recorded recently. Note, the last option in the key, without a label, are
those left blank, which will be coded as missing. Note also that those categories listed are
shown in blue whilst those which are not listed are shown in orange.

Figure 2.1: Additional admission mode categories
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Variable Explanation Measure
Status Did the patient survive Alive=0,

Died in theatre=1
Died in Recovery=2,

Died in Ward=3
Gender Sex Male=M,

Female=F
hospitalID Each hospital given a number Integer 1-132
adMode Mode of admission Elective=1

Unplanned=2
Emergency=3

Diabetes Does the patient have No=0, Yes=1
Smoker Up to within 2 months No=0, Yes=1
Dialysis Has the patient had renal No=0, Yes=1

Transplant Has the patient had renal No=0, Yes=1
Previous Previous surgery/stent No=0, Yes=1

AAASurgery Type of surgery Tube=1,
Groin=2,

Intraabdominal=3,
Other=9

Haemorrhage Has the patient had None=0, Major=1
Stroke Has the patient had Non-Disabling=0,

Disabling=1,
None=2

Myo Has the patient had
myocardial infarction No=0, Yes=1

Cardiac Patient had heart failure No=0, Yes=1
Hypo Has the patient had hypotension No=0, Yes=1
Age Age of patient Number of full years

Haemoglobin (Hb) [g/dl] Number
WhiteCell WCC [109/l] Number

Urea [mmol/l] Number
Sodium [mmol/l] Integer

Potassium [mmol/l] Number
LowBP BP of patient Integer

HighPulse Pulse of patient Integer

Table 2.1: An explanation of the variables
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Variable 0 1 2 3 9 NA
Gender F=2019 M=11990 - - - 1
adMode 43 9911 895 - - 3161
Diabetes 11698 1490 - - - 822
Smoker 8725 2274 - - - 3011
Dialysis 11943 150 - - - 1917

Transplant 11741 101 - - - 2168
Previous 12060 354 - - - 1596

AAASurgery - 5596 1096 2706 931 3681
Haemorrhage 4699 409 - - - 8902

Stroke 1337 43 3208 - - 9422
Myo 4671 569 - - - 8770

Cardiac 4240 602 - - - 9168
Hypo 4154 697 - - - 9159
Status 12183 279 850 255 - 443

Table 2.2: Quantities of the categorical variables

Variable Odds Ratio (2dp) p-value (2dp) 95% Confidence Interval (2dp)
Gender 0.66 1.69e-08 (0.57, 0.76)

Diabetes 1.12 0.21 (0.93, 1.34)
Smoker 1.13 0.14 (0.96, 1.33)
Dialysis 1.16 0.18 (0.82, 2.31)

Transplant 0.84 0.86 (0.35, 1.74)
Previous 1.28 0.14 (0.90, 1.79)

Haemorrhage 5.37 < 2.2e-16 (4.33, 6.66)
Myo 6.09 < 2.2e-16 (5.04, 7.35)

Cardiac 9.94 < 2.2e-16 (8.22, 12.04)
Hypo 12.77 < 2.2e-16 (10.62, 15.38)

Table 2.3: The odds ratios

Variable Lower Limit Upper Limit
Age 18 100

Haemoglobin 2 20
WhiteCell 2 50

Urea 0.1 800
Sodium 105 165

Potassium 2 40
LowBP 20 250

HighPulse 20 200

Table 2.4: Clinically plausible limits of the continuous variables
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Variable Data Lower Limit Data Upper Limit Number of Values set to NA
Age -53 108 169

Haemoglobin 0 1531 276
WhiteCell 0 298 324

Urea 0 808 201
Sodium 0 220 218

Potassium 0 140 215
LowBP 0 200 247

HighPulse 0 800 157

Table 2.5: Continuous variables: implausible values

Variable Number of Missing Values Percentage of Missing Values (1dp)
Gender 1 0.0
adMode 3161 22.6
Diabetes 822 5.9
Smoker 3011 21.5
Dialysis 1971 13.7

Transplant 2168 15.5
Previous 1596 11.4

AAASurgery 3681 26.3
Haemorrhage 8902 63.5

Stroke 9422 67.3
Myo 8770 62.6

Cardiac 9168 65.4
Hypo 9159 65.4
Status 443 3.2
Age 169 1.2

Haemoglobin 1460 10.4
WhiteCell 1719 12.3

Urea 1978 14.1
Sodium 1522 10.9

Potassium 1575 11.2
LowBP 2348 16.8

HighPulse 2427 17.3
hospitalID 0 0.0

Table 2.6: A summary of the missing values by variable
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Chapter 3

Missing Data: Theory

A missing data value is where there is no data for a particular variable under a certain subject.
Note this is different from a recorded value of zero. Missing data can commonly occur, es-
pecially in medical data, since some information may not be recorded. As this results in less
information than was initially intended, the missing data can affect the conclusions drawn.

Throughout this chapter, an example complete data set will be used to demonstrate the
theory being explained. The details of this body fat data set can be found below.

3.1 The Body Fat Data Set

This data set was obtained from Neter (1996) and concerns the body fat of females. It contains
20 healthy females, each with their body fat, triceps skinfold thickness, thigh circumference
and midarm circumference measured. The body fat reading was obtained using an expensive
method whereby the person was immersed in water. The aim is therefore to find a regression
model which can provide the estimated body fat, using the predictors provided. No units were
provided with the data set.

There follows some summary statistics and a regression model for the complete example
data set, so these can be used for comparisons when the data set is used to explain the theory.
The data set contains only continuous variables, which seem logically linked. The variable of
interest is body fat, with triceps skinfold thickness, thigh circumference and midarm circumfer-
ence as predictors. There are correlations between the predictors as shown below, with triceps
skinfold thickness and thigh circumference being the most highly correlated at 0.92 (2dp). In-
tuitively, one may assume that body fat is related to triceps skinfold thickness and thigh circum-
ference, since these are areas which appear to be more likely to store fat. Whereas the midarm
circumference seems, to the untrained, to be less affected by body fat. The correlations show
that triceps skinfold thickness and thigh circumference are both highly correlated with body fat,
since they are both over 0.8 (1dp), whereas the midarm circumference and body fat have only
a correlation of 0.14 (2dp). This may suggest that triceps skinfold thickness and thigh circum-
ference are more important at predicting body fat than midarm circumference. Note how the
predictors triceps and thigh are very highly correlated. If a variable selection method were to
be applied, it may result in one of these variables being removed from the final model. How-
ever, for this example, they will both remain in the model. It will be noted that this could cause
problems associated with collinearity, such as the estimated coefficients changing signs.
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Fat Triceps Thigh Midarm #the original data set

1 11.9 19.5 43.1 29.1

2 22.8 24.7 49.8 28.2

3 18.7 30.7 51.9 37.0

4 20.1 29.8 54.3 31.1

5 12.9 19.1 42.2 30.9

6 21.7 25.6 53.9 23.7

7 27.1 31.4 58.5 27.6

8 25.4 27.9 52.1 30.6

9 21.3 22.1 49.9 23.2

10 19.3 25.5 53.5 24.8

11 25.4 31.1 56.6 30.0

12 27.2 30.4 56.7 28.3

13 11.7 18.7 46.5 23.0

14 17.8 19.7 44.2 28.6

15 12.8 14.6 42.7 21.3

16 23.9 29.5 54.4 30.1

17 22.6 27.7 55.3 25.7

18 25.4 30.2 58.6 24.6

19 14.8 22.7 48.2 27.1

20 21.1 25.2 51.0 27.5

> cor(body) #correlation matrix #significant cors:

Fat Triceps Thigh Midarm fat/thigh

Fat 1.00 0.84 0.88 0.14 fat/triceps

Triceps 0.84 1.00 0.92 0.46 triceps/thigh

Thigh 0.88 0.92 1.00 0.09 triceps/midarm

Midarm 0.14 0.46 0.09 1.00

Figure 3.1 shows a pairs plot of the body fat data and suggests that the relationships between
the variables are linear, therefore multiple linear regression seems sensible. A linear regression
model can now be formed for the complete data set. This can then be used to compare with the
models which will be produced with the data set once values have been removed, that is, a data
set with ‘missing values’. The complete data set model is shown below. It can be seen that the
model produced is:

bodyfat = 117.1 + 4.3(triceps)− 2.9(thigh)− 2.2(midarm). (3.1)

Note the unusual output produced. None of the variables are considered to be significant,
yet the overall model is very significant. This may be explained by the high correlation between
the triceps and thigh variables.
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Figure 3.1: Pairs plot of the body fat data

Call: #output showing the regression model

lm(formula = fat ˜ triceps + thigh + midarm)

Residuals:

Min 1Q Median 3Q Max

-3.7263 -1.6111 0.3923 1.4656 4.1277

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 117.085 99.782 1.173 0.258

triceps 4.334 3.016 1.437 0.170

thigh -2.857 2.582 -1.106 0.285

midarm -2.186 1.595 -1.370 0.190

Residual standard error: 2.48 on 16 degrees of freedom

Multiple R-squared: 0.8014, Adjusted R-squared: 0.7641

F-statistic: 21.52 on 3 and 16 DF, p-value: 7.343e-06

Models will be formed using the methods which follow, to demonstrate how the methods are
used. These models can then be compared to this complete data set model to see whether there
is a difference, that is, how much the missing values affect the final model. Note however, that
this data set is very small, there are only 20 subjects. Therefore, for a more accurate comparison
of the different methods, these ideas will then be carried out using a larger data set with 1000
subjects, see chapter 4.
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3.2 Types of Missing Data

Missing data can occur for a number of different reasons, some of which are listed below.

• The subject does not wish to answer the question. This can occur frequently during some
data collection methods, such as questionnaires, since it is easy for the subject to miss
out questions and not feel under pressure to complete all the questions. There are certain
types of questions which may be more likely to be ignored than others, such as questions
concerning income or medical history, which may be considered to be personal. Note that
if there is an entire section regarding income or medical history, say, then this may result
in some subjects missing out entire sections of the questionnaire.

• When a study is over a period of time, that is a longitudinal study, there may be missing
data if the subject is removed from the study. For example, if the study is over a two year
period, and during month 10 the subject moves to another country and so can no longer
participate, then there will be missing data for this subject from month 10 to month 24.
Other reasons for subjects being removed from the study may include death, or no longer
satisfying the conditions required to participate, for example, having a certain illness.

• In medicine, there are many reasons why data may be missing. For example, there may be
a shortage of machinery and so it may be the case that some variables may not be recorded,
if not viewed to be essential, for example, height or weight. There may also be a shortage
of staff, which could result in the subjects visit being rushed and hence any unnecessary
steps ignored. Alternatively the member of staff, if busy, may not record a ‘satisfactory’
value, for example a healthy blood pressure reading, if they are particularly rushed. Or,
if this value is recorded, it may be recorded quickly and it is possible that the value could
be input incorrectly onto a computer, or the numbers unclear if on a handwritten report.
These steps could result in an implausible value being recorded. Missing data could also
arise from a patient who has passed away part way through their treatment, and hence the
most recent readings will be missing values.

There are also different types of missing data, and the type can determine the severity by
which the conclusions are affected by the missing data. Commonly used types are mentioned
below.

3.2.1 Missing Completely at Random (MCAR)

There are no systematic differences between the missing values and those which have been
recorded (Sterne et al, 2009). This type of missing data is called missing completely at random,
MCAR. It may arise from, say, a broken piece of machinery, which results in some subjects not
having their pulse measured. If the data are missing completely at random, the recorded data
is considered to be a random sample of the complete data set. It therefore has some desirable
qualities which other types of missingness do not possess.

This explanation is taken from Little & Rubin (2002). Let the complete data be Y = (yij),
which denotes an (n×K) rectangular data set which contains no missing values. The ith row is
yi = (yi1, ..., yiK), where yij is the value for variable Yj for subject i. Where there are missing
data, let the missing data indicator matrix be A = (Aij), where aij = 1 if yij is a missing value
and aij = 0 if yij is not missing. Note that A is then a matrix which shows the pattern of the
missing data. The missing data mechanism is characterised by the conditional distribution of A
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given Y , say f(A | Y, φ), where φ denotes the unknown parameters. If the missingness does
not depend on the values of the data Y , whether missing or recorded, then the data are called
missing completely at random. Therefore,

f(A | Y, φ) = f(A | φ), ∀ Y, φ. (3.2)

Note that this definition does not mean that the pattern of the missing values in the data
is random, but instead that the missingness does not depend on the data values in any of the
variables.

In the example data set regarding body fat, this means that the missing values will not differ
from those which have been recorded. For example, it may be that a subject does not have their
triceps skinfold thickness measured as the skinfold calipers used for measuring may have been
misplaced or may be in use elsewhere. Below is the data set with ten values missing completely
at random from the predictors only, that is around 17% MCAR overall,

(
10
60

)
, or 15 − 20% for

each predictor,
(

3
20

)
or
(

4
20

)
.

Fat Triceps Thigh Midarm

1 11.9 19.5 43.1 29.1

2 22.8 - 49.8 28.2

3 18.7 30.7 51.9 37.0

4 20.1 29.8 54.3 -

5 12.9 19.1 42.2 30.9

6 21.7 25.6 - 23.7

7 27.1 31.4 58.5 27.6

8 25.4 27.9 52.1 30.6

9 21.3 22.1 - -

10 19.3 25.5 53.5 24.8

11 25.4 31.1 56.6 30.0

12 27.2 30.4 56.7 28.3

13 11.7 18.7 46.5 -

14 17.8 19.7 44.2 28.6

15 12.8 14.6 42.7 21.3

16 23.9 - 54.4 30.1

17 22.6 - 55.3 25.7

18 25.4 30.2 - 24.6

19 14.8 22.7 48.2 27.1

20 21.1 25.2 51.0 -

3.2.2 Missing at Random (MAR)

Any systematic difference between the missing values and the recorded values can be explained
by differences in the other variables (Sterne et al, 2009). This is called missing at random, MAR.
For example, it may be the case that the missing blood pressure measurements are generally
lower than the recorded blood pressure measurements. However, this may be explained by the
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fact that younger people, with generally lower blood pressures, are more likely to have missing
blood pressure measurements (Sterne et al, 2009). Note that missing at random can be viewed
as a generalisation of missing completely at random (Cattle et al, 2011).

This explanation is taken from Little & Rubin (2002). As above, let the complete data
be Y = (yij) and let the missing data indicator matrix be A = Aij . Let Yobs denote the
observed entries of Y and let Ymis denote the missing components. The assumption which
is less restrictive than missing completely at random is that the missingness depends on the
components of Y which are observed Yobs, but not on those which are missing Ymis. Therefore,

f(A | Y, φ) = f(A | Yobs, φ), ∀ Ymis, φ. (3.3)

3.2.3 Missing Not at Random (MNAR)

Once the recorded data have been taken into account, there may still be systematic differences
between the missing values and the recorded values (Sterne et al, 2009). This is termed as
missing not at random, MNAR. For example, people who have high blood pressure may be
more likely to miss clinic appointments because they have headaches resulting from their high
blood pressure (Sterne et al, 2009).

Following on from the notation given for missing completely at random and missing at
random taken from Little & Rubin (2002), if the mechanism is missing not at random, this
means that the distribution of A depends on the missing values Ymis, in Y .

3.2.4 Missing by Design

The data are missing due to the design of the data collection, for example, the style of the ques-
tionnaire. This is a less commonly used term. Note that missing by design is often equivalent
to missing completely at random (Cattle et al, 2011). One example may be the duration of
diabetes. If the person is not diabetic, the answer to this question will be missing.

3.3 Deletion Methods

There are methods which have been suggested to try to reduce the amount of missing data or
cope with missing data when it is present. The amount of missing data can be reduced by care-
fully planning the method of data collection. For example, if a questionnaire is the most suitable
method to use, rather than selecting a paper questionnaire, an electronic questionnaire could be
used, which does not allow the subject to miss out any questions. It is easy to incorporate a
function whereby the subject cannot progress to the next question, without first completing the
current question. Generally, if missing data are still present, which is likely, then try to use a
data analysis method which is relatively robust to missing data. Deletion methods are one group
of methods which can be used

3.3.1 Complete Case Analysis/Listwise Deletion/Casewise Deletion

A commonly used approach for dealing with missing data is to only analyse the complete cases.
A complete case is a subject who has a value recorded for each of the variables, that is, they
have no missing data. Therefore, any subjects who have one or more value missing from the
variables are excluded from the analysis. The main advantage of complete case analysis is the
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simplicity of the method along with the fact that standard complete data analysis can be used
(Little & Rubin, 2002). However, complete case analysis can lead to bias in the results. Bias
usually occurs when the data are not missing completely at random and the complete cases are
not a random sample of the original cases (Little & Rubin, 2002). Also, in data sets with a large
number of variables, this can cause many of the subjects to be excluded from the analysis, which
results in a large loss of both power and precision (Sterne et al, 2009). Note that medical data
often contains many variables, both about the subject generally and their disease of interest.

There are situations where complete case analysis will not lead to bias. Examples, taken
from Sterne et al (2009), are listed below.

• When the missing data occurs only in the outcome variable which is measured only once
for each subject. This is only so if all variables associated with the outcome being missing,
can be included as covariates. This requires an assumption of missing at random.

• If the missing values are in the predictor variables and the reasons for the missing data are
unrelated to the outcome.

Complete case analysis should only be considered when the bias is minimal and there is
not much loss of precision, thus making the simple method attractive (Little & Rubin, 2002).
Note this will often be when there are only a small number of incomplete cases in relation to the
number of complete cases.

The example data set regarding body fat can be used here. From the original data set, let
ten of the original values be missing completely at random as shown in figure 3.2; the missing
values are represented with black circles. This revised data set will be used in the examples
which follow in this section.

Figure 3.2: Body fat data set: 10 values (∼ 17%) missing completely at random

For complete case analysis, the subjects with numbers 2, 4, 6, 10, 13, 16, 17, 18 and 20
would all need to be removed from the analysis. Therefore, just ten missing values (17%) would
result in 9 of the original 20 subjects (45%) being excluded for the purposes of the analysis. This
is a large loss of data. Multiple linear regression can now be used and a model produced for this
data set once the subjects with missing values have been removed. The resulting model is,
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Residuals: #model results

Min 1Q Median 3Q Max

-3.3129 -2.1982 0.2178 1.1987 3.6903

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 18.5488 145.4026 0.128 0.902

Xcomp[, 2] 1.3455 4.4042 0.306 0.769

Xcomp[, 3] -0.2621 3.7491 -0.070 0.946

Xcomp[, 4] -0.6769 2.3511 -0.288 0.782

Residual standard error: 2.909 on 7 degrees of freedom

Multiple R-squared: 0.8347, Adjusted R-squared: 0.7639

F-statistic: 11.78 on 3 and 7 DF, p-value: 0.003991

2.5 % 97.5 % #confidence intervals

(Intercept) -325.273847 362.371416

Xcomp[, 2] -9.068735 11.759705

Xcomp[, 3] -9.127365 8.603097

Xcomp[, 4] -6.236443 4.882682

Once models have been produced for all the different methods, these will be compared to
one another and the original model which has no missing values, see §3.7.

3.3.2 Available Case Analysis/Pairwise Deletion

Pairwise deletion is a similar idea to casewise or listwise deletion as mentioned above. However,
rather than deleting an entire subject if they have one or more value missing, this method simply
uses the subjects which are complete in terms of the variables required for the calculation. For
example, if there are 20 variables in total and for the first calculation only 10 variables are
required, then all subjects who have values for these 10 variables will be used. However, if in
the next calculation, only 8 variables are required, then there may be more subjects which can
contribute to the calculation. This can result in different calculations having different sample
sizes. This method can be suitable if there are,

1. A larger number of subjects,

2. Very few missing values, and

3. Not high correlations between the variables.

However, this method can still produce unreliable results and it does assume the data to
be missing completely at random (Little & Rubin, 2002). Also, as the sample size can change
from one calculation to another, this does not allow the analyst to compare the results across
the variables (Little & Rubin, 2002). For this reason, a fixed sample size would be far more
convenient.
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The example data set regarding body fat may not be suitable here, since there are only a few
subjects with a reasonably large amount of missing values and with high correlations between
the variables. Therefore, the results obtained from this method, for this data set, are expected to
be poor. Firstly, if all the variables were to be used in the analysis, the amended data set would
be same as that used for the complete case analysis. However, if just two predictors are used for
illustration, say triceps and thigh, then a new amended data set can be used. This results in 6
of the original 20 subjects being deleted from the analysis. The resulting model and output are
given below. Note how these differ again from the previous two models.

Call: #model results

lm(formula = Xcomp[, 1] ˜ Xcomp[, 2] + Xcomp[, 3])

Residuals:

Min 1Q Median 3Q Max

-3.0085 -2.1147 0.1564 1.0852 4.0237

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -23.17246 11.15710 -2.077 0.0715 .

Xcomp[, 2] 0.08408 0.42033 0.200 0.8464

Xcomp[, 3] 0.81003 0.40624 1.994 0.0813 .

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Residual standard error: 2.737 on 8 degrees of freedom

Multiple R-squared: 0.8327, Adjusted R-squared: 0.7909

F-statistic: 19.91 on 2 and 8 DF, p-value: 0.0007827

2.5 % 97.5 % #confidence intervals

(Intercept) -48.9007866 2.555873

Xcomp[, 2] -0.8851945 1.053364

Xcomp[, 3] -0.1267491 1.746816

3.4 Single Imputation

“Imputation is a procedure for entering a value for a specific data item where the response is
missing or incomplete” (UNECE, 2000). Alternatively, Statistics Canada (2003)[pp 43] states
that “imputation is the process used to determine and assign replacement values for missing,
invalid or inconsistent data that have failed edits. This is done by changing some of the responses
or assigning values when they are missing on the record being edited, to ensure that estimates
are of high quality and that a plausible, internally consistent record is created”. Therefore,
imputation is a method by which the missing values are replaced by an estimate. There are two
mains types of imputation, namely single imputation and multiple imputation. Single imputation
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is where one value is imputed for each of the missing items (Little & Rubin, 2002). Whereas
multiple imputation imputes more than one value, which allows for the additional uncertainty
of imputation (Little & Rubin, 2002). For more information on multiple imputation, see §3.5.

Single “imputations are means or draws from a predictive distribution of the missing values”
(Little & Rubin, 2002). Therefore, there must be a way of choosing the predictive distribution
for the imputed values, which must be based on the recorded data. Generally, there are two
methods which can be used to select the predictive distribution; explicit modelling or implicit
modelling. Explicit modelling is where a standard statistical model is chosen, such as the mul-
tivariate normal, and so the assumptions are explicit. Whereas implicit modelling is where the
predictive distribution is formed using an algorithm, hence the assumptions are implicit (Little
& Rubin, 2002).

Some of the different ways in which the replacement values can be imputed will be described
below.

3.4.1 Mean Imputation

Mean imputation is an example of an explicit modelling method (Little & Rubin, 2002). It is
commonly used as it is easy to perform, even for large data sets. First, the missing values for the
variable are located and set aside. There remains only the subjects with a value for the chosen
variable. The mean of these values is then computed and used as replacement values for those
missing values. This process is then repeated for each of the variables with missing values.
However, this method is not generally statistically valid and can result in serious bias (Sterne et
al, 2009).

This method of imputation can be carried out using the example data set about body fat.
First the mean values for the remaining variables must be calculated. These are shown in table
3.1. These can then be used in place of the missing values, and the regression performed as
usual.

Variable Mean Value (1dp)
Triceps 25.0
Thigh 50.6

Midarm 28.0

Table 3.1: Mean values: Body fat data set

The regression produces the following output,

Coefficients: #model results

Estimate Std. Error t value Pr(>|t|)

(Intercept) -9.4595 10.8369 -0.873 0.3956

triceps.i 0.4997 0.2739 1.824 0.0868 .

thigh.i 0.4734 0.2622 1.805 0.0899 .

midarm.i -0.2427 0.2131 -1.139 0.2715

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Residual standard error: 2.684 on 16 degrees of freedom

Multiple R-squared: 0.7673, Adjusted R-squared: 0.7237

F-statistic: 17.58 on 3 and 16 DF, p-value: 2.557e-05
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3.4.2 Median Imputation

Median imputation is also an example of explicit modelling and again it is very easy to carry
out. The process is the same as that for mean imputation, but the median value is used as
the replacement value rather than the mean. As with mean imputation, there is not statistical
justification for this method and it can lead to bias (Sterne et al, 2009). Single imputation of the
missing values has limitations since it results in small standard errors and it does not allow for
the uncertainty in the imputed values (Sterne et al, 2009).

This type of imputation can be carried out using the example body fat data set, once the
median values for the remaining variables have been calculated. These are shown in table 3.2.
These can then be used in place of the missing values, and the regression performed as usual.

Variable Median Value (1dp)
Triceps 25.5
Thigh 51.9

Midarm 28.2

Table 3.2: Median values: Body fat data set

The following output and model are then produced. Note how similar this is to the mean
imputation model.

Residuals: #model results

Min 1Q Median 3Q Max

-4.0376 -1.8797 0.0655 1.6993 3.7749

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -11.020 11.324 -0.97 0.345

triceps5 0.472 0.287 1.65 0.119

thigh5 0.500 0.273 1.83 0.086 .

midarm5 -0.215 0.213 -1.01 0.328

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Residual standard error: 2.59 on 16 degrees of freedom

Multiple R-squared: 0.783, Adjusted R-squared: 0.742

F-statistic: 19.2 on 3 and 16 DF, p-value: 1.48e-05

3.4.3 Regression Imputation

Regression imputation is a third example of explicit modelling. It predicts the missing values for
each subject using multiple regression of the missing item on items observed for that variable
(Little & Rubin, 2002). Mean imputation can be be viewed as a special case of regression
imputation, whereby the predictor variables are dummy indicator variables for the cells in which
the means are imputed (Little & Rubin, 2002). The model results generated in ‘mice’ with
quickpred, see §3.8, are shown below.
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Residuals: #model results

Min 1Q Median 3Q Max

-3.87944 -1.33060 -0.06103 1.26763 4.78081

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -120.327 110.086 -1.093 0.291

triceps.i -2.855 3.336 -0.856 0.405

thigh.i 3.261 2.845 1.146 0.269

midarm.i 1.657 1.769 0.937 0.363

Residual standard error: 2.646 on 16 degrees of freedom

Multiple R-squared: 0.7738, Adjusted R-squared: 0.7314

F-statistic: 18.25 on 3 and 16 DF, p-value: 2.042e-05

3.4.4 Stochastic Regression Imputation

Stochastic regression imputation is the final example of explicit modelling. It includes the addi-
tion of a random error to the regression prediction obtained using regression imputation, (Little
& Rubin, 2002). Stochastic regression imputation compensates for the underestimation of the
variance of variables with missing data that is associated with regression imputation. The mod-
els results generated using ‘mice’ and quickpred, see §3.8, are shown below.

Residuals: #model results

Min 1Q Median 3Q Max

-3.9454 -1.9167 0.1710 1.3670 4.0248

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -17.61059 97.19035 -0.181 0.858

triceps.i 0.25872 2.87264 0.090 0.929

thigh.i 0.62015 2.45001 0.253 0.803

midarm.i -0.01773 1.60181 -0.011 0.991

Residual standard error: 2.648 on 16 degrees of freedom

Multiple R-squared: 0.7736, Adjusted R-squared: 0.7311

F-statistic: 18.22 on 3 and 16 DF, p-value: 2.061e-05
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3.4.5 Hot Deck Imputation/Pattern Matching

This is the first example of implicit modelling. Pattern matching is a form of imputation where
the missing values are replaced with the value held by another subject. This other subject is
similar in respect to the other variables, for which both subjects do have values recorded. This
method is most suitable when there are a low number of missing values and the missing values
are present in many different variables (Kilne, 1998). This method is very common when using
surveys and there are a number of different techniques available for how the ‘similar’ subject
can be selected (Little & Rubin, 2002).

3.4.6 Substitution

Substitution is another example of implicit modelling. It works by replacing a non-responding
subject by another which was not initially selected (Little & Rubin, 2002). For example, if a
subject cannot be contacted, then another subject with similar characteristics, who was initially
not selected, can be substituted. The subject may be similar with respect to a set variable,
such as location or age. Note that the substituted subject differs from the initial subject since
they responded. This can show a systematic difference between the two subjects and hence the
substituted subject should be regarded as an imputation (Little & Rubin, 2002).

3.4.7 Cold Deck Imputation

Cold deck imputation is also an example of implicit modelling. It works by replacing the missing
value with a constant value which is obtained from an external source, which may be a similar
survey conducted in the past (Little & Rubin, 2002).

3.4.8 Composite Methods

Composite methods can also be classed as implicit. They simply combine ideas from different
methods to form a compromise. An example may be combining hot deck and regression impu-
tation by calculating the predicted means using regression but adding a residual (Little & Rubin,
2002).

3.4.9 Comments

Single imputation methods are generally relatively easy to conduct and thus can be popular.
However, they can cause the estimated standard errors to be smaller than they should be, since
they do not allow for the added uncertainty surrounding the missing values (Cattle et al, 2011).
For example, mean imputation causes the estimated standard errors to generally be smaller and
does not result in as much variability as is likely. Another example is regression imputation,
which tends to strengthen correlations between the variables (Cattle et al, 2011).

3.5 Multiple Imputation

This information is taken from Sterne et al (2009), unless otherwise stated. Multiple imputation
is a commonly used approach for tackling problems associated with missing data. It is therefore
now widely available as a function in many statistical software packages. It is intended to be
an improvement on single imputation by allowing for the uncertainty associated with imputing
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the missing values. It does this by producing several different possible imputed data sets and
combining the set of results.

First, the data set is duplicated M times and each of the data sets has the missing values
within it replaced with imputed values. These data sets are then sampled from their predictive
distribution based on the recorded data. The procedure needs to allows for the uncertainty in-
volved in imputing the values, hence it must provide the imputed values with a suitable amount
of variability. Next, standard statistical methods should be used to fit appropriate models to each
of the data sets, to answer the required question. Note that each of the data sets will provide
slightly different results as there is the variability introduced to account for the uncertainty in-
volved. Overall estimated relationships can be obtained by averaging over the data sets. Rubin’s
rules (Rubin, 1987) are used to calculate the standard errors, and hence allow for the variability
in the results. “Rubin’s rules state that the average of the parameter of interest is the multiply
imputed estimator and its sampling variance is the average of the completed data sampling vari-
ances, inflated by the between completion variance (Rubin, 1987)” (Cattle et al, 2011). This
is described mathematically by Cattle et al (2011) as follows; let θ̂m,m = 1, ....,M be the set
of completed data estimates, that is including the imputed values, from the population quantity
θ. Also, let ŝ2m be the estimates of the completed data sampling variances. Then, according to
Rubin’s rules, the multiply imputed estimator of θ is,

θ̂ =
1

M

M∑
m=1

θ̂m. (3.4)

Its sampling variance can be calculated using,

ŝ2 = Û +

(
1 +

1

M

)
B̂, (3.5)

where,

Û =
1

M

M∑
m=1

s2m, (3.6)

and,

B̂ =
1

M − 1

M∑
m=1

(θ̂m − θ̃)2. (3.7)

Note that Û would be the estimate of the sampling variance for θ̂ if the data had not included
missing values. The B̂ term increases the sampling variance to account for the uncertainty
involved in imputing the missing values. Lastly, B

M is a correction used as there are only a
finite number of imputations carried out. The conclusions drawn are valid, since the averaging
is carried out over the distribution of the missing data conditional on the recorded data.

The number of predictors in an imputation model should ideally be as big as possible, as
generally, using more information will result in imputations with less bias (Meng, 1994). The
imputation model should contain at least as many predictors as the final model, for example
regression model, which will be analysed after the imputation. This is known as congeniality
(Meng, 1994).

There are some points which should be considered when carrying out multiple imputation,
to try to obtain accurate results. These include;
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• The outcome variable should be included when imputing the missing value of a predictor.
It is likely that the outcome value for the subject contains information about the predictor
value.

• Many of the multiple imputation procedures assume the data to be normally distributed.
Therefore problems can arise if this is not the case. One suggestion is to transform the data
to be approximately normal before imputation and then transform back after imputing.
Note that additional problems arise if any of the data are binary or categorical. It is
believed that some methods are more suitable for categorical variables with missing data
than others, but this is an area requiring further research.

• The missing at random assumption is a justification for the analysis and not a property
of the data. Multiple imputation will only not contain bias if there are enough suitable
variables included in the imputation model. For example, if subjects with high social-
economic status are more likely to have their systolic blood pressure recorded and also
less likely to have high systolic blood pressure, then social-economic status would need
to be included in the imputation model, or else the model would underestimate the mean
systolic blood pressure, which in turn could affect any associations between variables.
For this reason, it is advisable to include a large number of variables in the imputation
model.

• There may be data missing not at random, which can affect the validity of the multiple
imputation results. For example, in an investigation of causes of depression, those de-
pressed at the time may be more likely to not attend appointments. Therefore, this data
would not be missing at random nor missing completely at random. However, the size of
this problem is difficult to predict and therefore, it is a point which should be considered
and mentioned during the report.

• Multiple imputation involves many computations and some approximations and therefore
there may be situations where the algorithm needs to be run over and over. If the algorithm
is not repeated enough times or the situation is different to that which the software was
developed for, the results may not be as accurate as hoped.

Below is the R output from the multiple imputations using the body fat data set. The first
output shows the results for 10 imputations, including the estimates, their standard error and the
corresponding 95% confidence interval. The second output shows the same information but for
100 imputations. In this case it can be seen that the signs of the triceps and midarm estimates
change. The standard errors of the estimates for 100 imputations are larger than the standard
errors of the estimates for 10 imputations, but this is because the method has allowed for the
added uncertainty involved in imputing values.

#for m=10, ie, 10 imputations

est se lo 95 hi 95

(Intercept) -41.5513761 96.841654 -256.640059 173.537307

triceps.i -0.4423796 2.914073 -6.916134 6.031375

thigh.i 1.2170665 2.495808 -4.327399 6.761532

midarm.i 0.3868629 1.553794 -3.064283 3.838009
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#for m=100, ie, 100 imputations

est se lo 95 hi 95

(Intercept)-10.46100325 105.790122 -246.026157 225.104150

triceps.i 0.48875184 3.201433 -6.638638 7.616141

thigh.i 0.40453702 2.731654 -5.676983 6.486057

midarm.i -0.08418138 1.702489 -3.875787 3.707424

3.6 Other Methods

There are many other methods which have been suggested to deal with the problems associated
with missing data. Two main examples are mentioned below, but not investigated any further
for this study,

1. Full information maximum likelihood estimation (FIML),

2. The expectation-maximisation (EM) algorithm.

3.7 Summary and Comparison of the Methods

Some of the methods previously mentioned have been carried out using the data set regarding
body fat with 20 subjects. Recall that the data set has 10 values, around 17%, missing completely
at random (MCAR). The results from these methods are listed in table 3.3. Table 3.3 shows the
linear regression models generated once the methods for dealing with the missing data had
been used. The ‘original model’ is the linear regression model created from the data before
any values were removed to create missingness. This is therefore the model which the others
will be compared to. These estimates and confidence intervals were all generated using R,
following the steps mentioned previously for each of the methods. The multiple imputations,
however, were carried out using a statistical package in R called ‘mice’, see §3.8. As each
method was only carried out once, it must be noted that some methods, such as stochastic
regression imputation, may produce different results if carried out again. Note that others, such
as mean imputation or median imputation, will remain the same however many times they are
redone. Therefore, ideally these methods should be carried out a number of times and the results
from these combined to produce a more accurate model.

From table 3.3 it can be seen that the original model suggests a positive correlation between
the triceps variable and the outcome of body fat. It also suggests a negative association with
both the thigh and midarm variables against body fat. However, none of the models which
follow show these same associations. It can also be seen that the regression imputation model
estimates, for all variables, lie outside the confidence intervals for the original model. Note also
how the confidence intervals are generally rather wide, this is likely to be caused by the small
number of subjects being studied. This, however, also results in many of the confidence intervals
including both positive and negative values, which correspond to the variables not having a
significant effect on the outcome of body fat. Therefore, the results seem rather inconclusive as
to which variables are positively and which are negatively associated with the outcome of body
fat. This may be partly explained by the high correlation between the triceps and thigh variables,
which can cause problems associated with multicollinearity. One solution may be to use either
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the triceps or thigh variable as a predictor of the other and use just one of these variables. The
results may be further improved if more information was available.

Method Variable Estimate (1dp) 95% Confidence Interval (1dp)
Original Model Intercept 117.1 (-78.5, 312.7)

(No missing data) Triceps 4.3 (-1.6, 10.2)
Thigh -2.9 (-7.9, 2.2)

Midarm -2.2 (-5.3, 0.9)
Complete Case Analysis Intercept 18.6 (-325.3, 362.4)

Triceps 1.4 (-9.1, 11.8)
Thigh -0.3 (-9.1, -8.6)

Midarm 0.7 (-6.2, 4.9)
Mean Imputation Intercept -9.5 (-3.7, 11.8)

Triceps 0.5 (0.0, 1.0)
Thigh 0.5 (0.0, 1.0)

Midarm -0.2 (-0.7, 0.2)
Regression Imputation Intercept -120.3 (-336.1, 95.4)

Triceps -2.9 (-9.4, 3.7)
Thigh 3.3 (-2.3, 8.8)

Midarm 1.7 (-1.8, 5.1)
Stochastic Regression Intercept -17.6 (-208.1, 172.9)

Imputation Triceps 0.3 (-5.4, 5.9)
Thigh 0.6 (-4.2, 5.4)

Midarm 0.0 (-3.2, 3.1)
Multiple Imputation Intercept -41.6 (-256.6, 173.5)

(10) Triceps -0.4 (-6.9, 6.0)
Thigh 1.2 (-4.3, 6.8)

Midarm 0.4 (-3.1, 3.8)
Multiple Imputation Intercept -10.5 (-264.0, 225.1)

(100) Triceps 0.5 (-6.6, 7.6)
Thigh 0.4 (-5.7, 6.5)

Midarm -0.1 (-3.9, 3.7)

Table 3.3: Estimates and confidence intervals produced using different methods: Body fat data
set, 20 subjects, MCAR

Figure 3.3 shows the estimates and confidence intervals from the models produced using
different methods for coping with missing data. It also shows the original model, that is, the
model produced when no data are missing. Figure 3.3 corresponds to the numbers in table 3.3.
It can be seen clearly from figure 3.3 that the complete case analysis model has the widest confi-
dence intervals, since it has the least information available, as some subjects have been removed
before analysis. The mean imputation model has the smallest confidence intervals, since any
missing values are replaced by the mean value and therefore the variance is likely to be reduced,
hence shrinking the confidence intervals. It can be seen that all confidence intervals overlap
with the confidence interval for the original model. Also, all estimates except for regression
imputation lie within the confidence intervals of the original model. Note, however, that regres-
sion imputation is a method which may produce different results if carried out several times,
so this may not be so if the imputation was rerun. Also, the results can vary greatly depending
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upon which particular values are missing. For example, if those near the mean are removed,
then mean imputation should cope relatively well, compared with if those far from the mean are
removed. This also applies to those points which are more likely to affect a regression line and
hence may affect the performance of regression imputation.

Figure 3.3: Estimates and confidence intervals for the body fat data: 20 subjects, 17 percent
MCAR
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3.8 The ‘mice’ Package

The ‘mice’ package in R (Van Buuren & Groothuis-Oudshoorn, 2011) will be used to produce
all the estimates and confidence intervals for chapter 4. There follows information on this pack-
age, choices which need to be made during the calculations and details of any defaults which
can be used. Many of the detail which follow are based on the information in Van Buuren &
Groothuis-Oudshoorn (2011).

The name of the package, ‘mice’, stands for ‘Multivariate Imputation by Chained Equa-
tions’. Recall that multiple imputation is an option for tackling complex data with missing
values and note that when the missing values are in more than one variable, this can increase
the complexity of the problem. One method for imputing multivariate data is called fully condi-
tional specification (FCS) and this is the method adopted by the ‘mice’ package. FCS specifies
the imputation model one variable at a time using a set of conditional densities. There is one set
of conditional densities for each incomplete variable. Then, once the initial imputation has been
specified, the remaining imputations can be obtained by iterating over these conditional densi-
ties. One advantage of this method is that often a low number of iterations will be sufficient, say
10-20.

The ‘mice’ package works in stages for multiple imputation. It first takes the original data,
with missing values, and creates as many copies of the data set as required, which have the
missing values replaced by plausible, imputed values. Note the imputed values will differ be-
tween the data sets, hence there are now several data sets with the same observed values, but
different imputed values. The imputed data sets are then saved in the package as a mids, that is,
a ‘multiply imputed data set’. It then analyses the results from each of the separate imputed data
sets. The analysis will differ depending upon the quantity of interest, it may be, for example, a
regression coefficient. The analysis method used is often the same as the one which would be
used had the data set been complete initially. There is a with function in the package which al-
lows the analysis to be completed directly using the imputed data sets. There will be differences
between the results from the different imputed data sets since there is uncertainty involved as
to which imputed values to use. The results from the analyses are then stored as a mira, that
is a ‘multiply imputed repeated analysis’. Finally it pools the results from these different data
sets using Rubin’s rules, see §3.5, to form one overall result, with an associated variance. The
pooled results are lastly stored as a mipo, a ‘multiply imputed pooled outcomes’. Figure 3.4
shows these steps more clearly.

There are some problems which may occur from using the above method. Some of these are
listed below.

1. For a particular variable with missing values, the other variables used to impute may
themselves have values missing,

2. Circular dependencies may occur when variables are correlated, leading to the first vari-
able relying upon the second, and the second on the first,

3. When the number of variables is large and the number of subjects is small, there can be
problems associated with collinearity or empty cells,

4. Sometimes there will be restrictions, such as when the data is ordered. One example is
when there is longitudinal data,

5. It may be more complicated when the data consists of several different types, such as
some categorical, some binary, some continuous, etc,
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Figure 3.4: The steps used in multiple imputation, taken from Van Buuren & Groothuis-
Oudshoorn (2011) Figure 1

6. Imputation can create impossible values, such as negative weights or pregnant males.

Therefore, care must be taken to summarise the imputated data sets and limit these problems
where possible. One way to help alleviate some of these problems is by stating a specific
imputation model for each column of the data, depending on the nature of the data in that
column.

The ‘mice’ package can be used to summarise the data with missing values before any
imputation is carried out. One possibility is to calculate the numbers of rows which are com-
plete, which can then be used to calculate the number of missing data values. An alternative
method is to calculate the missingness for pairs of variables. It may be that both the variables
are missing, both are present, or one or the other is missing. The package also has many de-
faults programmed, therefore, it is possible to simply use one command using the data set with
missing values, to produce a multiply imputed data set. Of course, these default settings do not
need to be used, but allow for a basic mids to be produced easily. Once the mids is obtained,
the imputations should be examined to assess whether they are plausible. Therefore, diagnostic
checks should be carried out on the imputed values. Once the imputed values have been deemed
satisfactory, they can be combined with the observed values to create an imputed data set. Note
that different imputed data sets will have variations in the imputed values but the observed val-
ues will remain the same. Next, the analysis of interest can be carried out, in one single step, on
all the imputed data sets, and the results pooled using Rubin’s rules, see §3.5. Finally summaries
can be produced of these pooled results for the overall conclusions to be drawn.

Choosing the imputation model is perhaps the most difficult part of the ‘mice’ package in
R. There are seven stages which should be considered.

1. Whether the MAR assumption is plausible. This can be investigated using summary plots
or summary tables.

2. The imputation model form needs to be specified for each column which contains missing
values. Both the nature of the data in the column will be need to be considered and the re-
lationship the column has with other columns. It is possible to specify a method for each
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column separately, or use one method for all the columns. The package will automatically
skip any variables without missing values, but it can also be requested that certain vari-
ables with missing values are also not imputed if required. Defaults are available and the
package can distinguish between numerical, binary and categorical variables and assign
the default method to each if necessary. The defaults are shown in table 3.4. See chapter
5 for more information on these methods.

Method Description Scale Type
pmm Predictive mean matching Numeric
logreg Logistic regression Factor, 2 levels

polyreg Polytomous (unordered) regression Factor, > 2 levels

Table 3.4: Table showing the default methods for imputation in ‘mice’

3. The set of variables which can be used as predictors should be chosen. It is recommended
that as many appropriate variables as possible are included, but this may not be suitable
for all data sets. A predictor matrix can be build which is a matrix of zeros and ones which
indicate whether one variable is used as a predictor for another variable. The diagonal of
this matrix will contain only zeros, since a variable cannot predict itself. There may be
cases where the number of variables is very large and including all variables as predictors
may become impractical or cause problems associated with multicollinearity. However,
including more variables does make the MAR assumption more plausible. However, a
suitably selected set of predictors will need to be chosen. Some advise is given on how to
choose this subset.

(a) Include all variables which will be included in the model after the imputation stage.

(b) Include all variables which are related to the reasons for the missing values.

(c) Include any variables which explain a large amount of variability.

(d) Remove any variables from the previous two stage which should not be included as
they have a large percentage of missing values.

There is an option in the package to generate a prediction matrix quickly using the corre-
lations of the variables as a basis. This includes a threshold which decides whether or not
the variables should be used as predictors. For more details, see §4.2. Alternatively the
default can be used, whereby each variable is used as a predictor for the other variables.

4. Whether to include in the imputation model those variables which are functions of other
variables. For example, there may be a column for height, another for weight and a third
for body mass index (BMI). It must then be questioned whether it is logical to impute
values for all three of these variables, since BMI is calculated as the weight in kilograms
divided by the height in metres squared. The package contains a mechanism, called pas-
sive imputation, to help deal with such circumstances.

5. Which order the variables should be imputed in. The default for the package is to impute
the variables in order from left to right.

6. Where the starting imputation should be and the number of iterations. The default number
of iterations is 5.
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7. The number of multiply imputed data sets which should be generated. The default number
of imputations is 5.

Other issues may need to be considered in addition to the ones listed above. Such as, it
may be necessary to set limits on some of the imputed values. For example, there may be some
implausible values. Say one variable is weight, there may be values imputed for weight which
are negative. In this case, one solution would be to insert a lower bound on the weight variable,
so any negative weights are pushed up to a certain minimum value, say zero. These restrictions
will usually depend upon prior knowledge of the variables in the context they are in.

Once the imputed values have been obtained, the complete data sets, that is the observed val-
ues along with the imputed values, can be viewed for each of the imputed data sets. Summaries
for each of the complete data sets can also be produced. Alternatively, if required, the imputed
values only can be called in R and summaries of these studied. Next, the subjects who have
had their outcome imputed must be removed from the analysis. They are used in the imputation
stage to aid the imputation of the other variables, but must be removed from the final analysis
stage. If they were to be kept in, they could add error to the results, (Cattle et al, 2011). Once
the imputed data sets have been considered, they can be pooled using Rubin’s rules, see §3.5,
to give more accurate estimates and standard errors overall. Summaries of the pooled estimates
can also be generated. Further example of using the ‘mice’ package are shown in chapter 5.
There are also examples of the R code in appendix B.
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Chapter 4

Missing Data: Body Fat Data Set
Example (1000 subjects)

The body fat data set used in chapter 3 only contained 20 subjects. This is a useful size for a
data set so the methods so far can be clearly explained. However, to thoroughly compare these
methods, a larger data set is required. Therefore, the 20 subjects will be used as a basis on
which to simulate a larger data set. The larger data set will contain 1000 subjects, which should
be sufficient to compare the different methods.

4.1 The Data

First, the summary statistics from the original 20 subjects will be taken. These are shown in
table 4.1. Next, the distribution of the data was investigated. A multivariate normal distribution
was assumed, since the pairs plots showed approximately elliptical patterns, see figure 3.1 and
each of the individual variables has approximately a normal distribution as shown in figure 4.1.
It can be seen that there are no major departures from normality for each of the variables.

R was used to generate 1000 subjects from a multivariate normal distribution with the same
mean and variance values as those listed in table 4.1. This was done using the vector of means
from the variables of the original 20 subjects, along with their covariance matrix. The seed was
also set for the random number generation, to allow the same 1000 subjects to be generated each
time the command was run. The summary statistics from the 1000 subjects were then generated
to ensure they were similar to those in table 4.1, see the R output below. First shown are the
correlation matrices for both the 1000 subjects (sample) and the 20 subjects (body), then
the mean values and variance/covariance matrix for easy comparison with table 4.1. The 1000
subjects can be seen in figure 4.2. Figure 4.3 shows the pairs plot for this new data set.

Variable Mean (1dp) Variance (1dp)
Fat 20.2 26.1

Triceps 25.3 25.2
Thigh 51.2 27.4

Midarm 27.6 13.3

Table 4.1: Summary statistics of the original body fat data set
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Figure 4.1: Body fat data set: qq-plots

> cor(sample) #1000 values > cor(body) #20 values

Fat Tri Thigh Midarm Fat Tri Thigh Midarm

Fat 1.00 0.84 0.878 0.142 Fat 1.00 0.84 0.878 0.142

Tri 0.84 1.00 0.924 0.458 Tri 0.84 1.00 0.924 0.458

Thigh 0.88 0.92 1.000 0.085 Thigh 0.88 0.92 1.000 0.085

Midarm 0.14 0.46 0.085 1.000 Midarm 0.14 0.46 0.085 1.000

> mean(sample[,1]) #1000 values > mean(body) #20 values

[1] 20.2 Fat Triceps Thigh Midarm

> mean(sample[,2]) 20.2 25.3 51.2 27.6

[1] 25.3

> mean(sample[,3])

[1] 51.2

> mean(sample[,4])

[1] 27.6

> var(sample) #1000 values > var(body) #20 values

Fat Tri Thigh Midarm Fat Tri Thigh Midarm

Fat 26.07 21.63 23.47 2.65 Fat 26.07 21.63 23.47 2.65

Tri 21.63 25.23 24.29 8.39 Tri 21.63 25.23 24.29 8.39

Thigh 23.47 24.29 27.40 1.62 Thigh 23.47 24.29 27.40 1.62

Midarm 2.65 8.39 1.62 13.30 Midarm 2.65 8.39 1.62 13.30
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Figure 4.2: Body fat data set: 1000 generated values

Figure 4.3: Pairs plot for the body fat data: 1000 subjects

Next, some the methods used for the original body fat data set will be carried out for the
new larger set and new models produced. These models will then be compared to see how much
they differ from one another and also from the model generated using the full data set with no
missing values. It can then be judged which methods appear to be more accurate.

4.2 Missing Values

To generate the models, first some data have to be made ‘missing’. To remove some of the data,
a loop will be written in R for each missingness mechanism, which can remove some of the
data values and replace them with NA. The seed will be set for each of the randomly generated
sections, to ensure the same observations are deleted each time the loop is run. The R code for
these loops can be found in appendix B. Once some values have been set to NA, this can be used
as a basis for each of the analysis methods. Each method will be run five times, with different
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levels of missingness in each variable; 10%, 20%, 30%, 40%, 50%. Tables 4.3, 4.4 and 4.5 will
show the number of complete cases once the missingness has been generated. These tables are
used because the number of complete cases remaining cannot be easily estimated from solely
the percentage of missingness and the method used to generate the missing values. For example,
if there are 10% of values missing from each variable, this will usually result in more then 10%
of subjects missing from the complete case analysis, since it is unlikely that the same 10% of
subjects will be selected for each variable. Note that in this example, missingness will be gener-
ated in the all four variables for the data which are MCAR. For MAR and MNAR, missingness
will only be generated in the three predictors. Image plots, see example in figure 4.4, will also
be shown in figures 4.7, 4.11 and 4.15 which show the missingness generated for each mech-
anism. The plots show each of the missingness percentages, 10%, 20%, 30%, 40%, 50%, with
the x-axis showing the four variables; fat, triceps, thigh and midarm, and the y-axis showing the
1000 subjects. The present subjects will be shown in red and those missing will be shown in
white.

Figure 4.4: An image plot

The plots in figures 4.7, 4.11 and 4.15 can be summarised in a table using the md.pattern
command in the ‘mice’ package in R. This summarises how many subjects have each combi-
nation of missing/present variables. There are five columns; one for each of the four variables
plus a final column showing the number of missing variables. In the left margin there is also
a list showing the number of subjects which have the given missingness pattern. A value of 1
represents a variable is observed, whilst a value of 0 indicates a missing value. The rows show
the different patterns of missingness which can occur. The rows will only show combinations
of missingness which occur amongst the subjects. Note there are up to 2n rows, where n is the
number of variables. The final row then shows the totals from the columns. This summary can
then be used to assess whether there appears to be any obvious patterns in the data in terms of
which variables are missing.

> md.pattern(x) #md.pattern command

thigh.i fat.i triceps.i midarm.i

84 1 0 1 1 1

79 1 1 0 1 1

. . . . . .

. . . . . .

Another summary method is to investigate pairs of the variables. In a pair of variables for
each subject, there are four options; recorded/recorded, recorded/missing, missing/recorded or
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missing/missing. Studying the pairs of variables offers another way in which to find patterns in
the data. The md.pairs command in the ‘mice’ package in R produces four tables giving the
number of subjects with each combination of missingness.

fat.i triceps.i thigh.i midarm.i #md.pairs command

fat.i 490 204 236 196 for recorded/recorded

triceps.i 204 488 238 205

thigh.i 236 238 533 227

midarm.i 196 205 227 475

Margin plots, see figure 4.5 for an example, are a graphical summary which can be used to
investigate the missingness mechanism. These are shown in figures 4.8, 4.12 and 4.16. The blue
dots show the subjects which have observed values for both the variables considered. The red
dots show the subjects which have one of these two variables missing. The one observed value
for that subject is plotted at the correct point along the observed variable axis. The orange dots
simply show those subjects who have missing values for both variables. The box plots along
each axis summarise the observed points in blue and missing points in red. For the data to be
MCAR it is expected that these two box plots, along each axis, are similar.

Figure 4.5: A margin plot

To form the complete case analysis, those subjects containing one or more missing value
will be excluded from the analysis by removing their entire row. The model can then be run
with the remaining complete subjects. The pairwise deletion method will not be conducted as
it will produce the same results as the complete case analysis, since all the variables are being
used. Next, the missing values will be replaced with the mean of the remaining subjects for
the relevant variable. The model will then be generated using this amended data set. Median
imputation will not be included as the multivariate normal distribution of the data would cause
the results to be very similar to those obtained for mean imputation. Stochastic regression
imputation will also be used and will be the basis for multiple imputation, which will be carried
out using both 10 and 100 imputations. Note there are other methods which could be selected;
these are show in table 4.2. Further details for each of these methods can be found in Van Buuren
& Groothuis-Oudshoorn (2011). Predictive mean matching is the same as pattern matching or
hot deck imputation whereby the missing value is replaced with the value from another similar
subject. The two forms of regression imputation and mean imputation have also previously been
described, see chapter 3. Once generated, these estimates can be compared with the ‘original
model’ from the data set with 1000 subjects with no values missing, that is,

bodyfat = 117.09 + 4.33(triceps)− 2.86(thigh)− 2.19(midarm). (4.1)
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Method Description Scale Type
pmm Predictive mean matching Numeric
norm Bayesian linear regression Numeric

norm.nob Linear regression, non-Bayesian Numeric
mean Unconditional mean imputation Numeric

2l.norm Two-level linear model Numeric
logreg Logistic regression Factor, 2 levels

polyreg Polytomous (unordered) regression Factor, > 2 levels
lda Linear discriminant analysis Factor

sample Random sample from the observed data Any

Table 4.2: Table showing the possible methods for imputation in ‘mice’, taken from Van Buuren
& Groothuis-Oudshoorn (2011), Table 1

All calculations will be carried out using the ‘mice’ package in R, see §3.8 for more details.
The prediction matrix which will be used for these calculations is the matrix generated in R
using the correlations between the variables. The default setting will be used, which considers
the variables to be predictors if their correlation is above 0.1. This results in the following
prediction matrix being generated,

> pred #quickpredbodyfat - default of 0.1

fat.i triceps.i thigh.i midarm.i

fat.i 0 1 1 1

triceps.i 1 0 1 1

thigh.i 1 1 0 0

midarm.i 1 1 0 0

Note this is easy to generate manually using the correlation matrix as shown below. The
default setting of 0.1 can be altered to form different prediction matrices depending upon the
nature of the data. The threshold can also be specified for each of the columns if necessary. Al-
ternatively, the prediction matrix can be set to include only predictors with a certain percentage
of usable cases. Two example are shown below.

> cor(sample) #correlation matrix for the data

Fat Triceps Thigh Midarm

Fat 1.00 0.84 0.878 0.142

Triceps 0.84 1.00 0.924 0.458

Thigh 0.88 0.92 1.000 0.085

Midarm 0.14 0.46 0.085 1.000

> pred #correlation threshold set at 0.5 for all variables

fat.i triceps.i thigh.i midarm.i

fat.i 0 1 1 0

triceps.i 1 0 1 0

thigh.i 1 1 0 0

midarm.i 0 0 0 0
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> pred #minimum usable percentage set at 50 for each variable

fat.i triceps.i thigh.i midarm.i

fat.i 0 1 1 1

triceps.i 1 0 1 1

thigh.i 1 1 0 0

midarm.i 1 1 0 0

Graphs will then be produced for each of the different mechanisms which compare the
different methods, see figure 4.6 for an example. Figures 4.9, 4.10, 4.13, 4.14, 4.17 and 4.18
show these summary graphs, two each for MCAR, MAR and MNAR. The first line, in black,
shows the original model with no missing data, which the remaining models can be compared to.
The circles represent the estimates, while the lines show the 95% confidence intervals for these
estimates. Five methods are included; complete case analysis (red), mean imputation (blue),
(stochastic) regression imputation (orange), multiple (10) imputation (pink) and multiple (100)
imputation (purple). Stochastic regression imputation was used for the multiple imputation. All
methods were carried out using the ‘mice’ package in R, see §3.8. The methods were carried
out for 10%, 20%, 30%, 40% and 50% missingness. The five lines for each method show these
increasing percentages of missingness.

Figure 4.6: A model summary plot

4.3 Missing Completely at Random, MCAR

Figure 4.7 shows the image plot for the data which are MCAR. Note the percentage missing is
for each of the variables. For easier interpretation, table 4.3 shows the number of complete cases
after the missing values have been generated. As the R code used to produce this missingness
was fairly long, the images are a useful method for checking the commands have produced the
desired missingness and that no patterns are present amongst the missing values. It can be seen
that the missingness appears to be as intended, therefore the models can now be produced using
the different methods for coping with missingness.

Below is an example showing the md.pattern command which is the summary for the
data which are MCAR for 50% missingness. For example, the first row of numbers shows there
are 84 subjects from 1000 who have their fat reading missing, but have observed values for
thigh, triceps and midarm. The final column shows that this combination of missingness results
in one variable from four missing. There are no patterns in this summary, which is as expected
as the observations are MCAR.
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Percentage Missing Number of Complete Cases (from 1000)
10 800
20 600
30 400
40 200
50 0

Table 4.3: Table of complete cases after missingness: MCAR

> md.pattern(x) #mcar, percentage missing: 50

thigh.i fat.i triceps.i midarm.i

84 1 0 1 1 1

79 1 1 0 1 1

71 0 1 1 1 1

86 1 1 1 0 1

64 1 0 0 1 2

50 0 0 1 1 2

46 0 1 0 1 2

68 1 0 1 0 2

71 1 1 0 0 2

47 0 1 1 0 2

81 0 0 0 1 3

81 1 0 0 0 3

82 0 0 1 0 3

90 0 1 0 0 3

467 510 512 525 2014

The md.pairs command is shown below as an example for the data which are MCAR
for 50% missingness. It can be seen that there are no obvious patterns in the data, which is as
expected since the observations are MCAR.

> md.pairs(x) #mcar 50

$rr #recorded#recorded

fat.i triceps.i thigh.i midarm.i

fat.i 490 204 236 196

triceps.i 204 488 238 205

thigh.i 236 238 533 227

midarm.i 196 205 227 475

38



$rm #recorded/missing

fat.i triceps.i thigh.i midarm.i

fat.i 0 286 254 294

triceps.i 284 0 250 283

thigh.i 297 295 0 306

midarm.i 279 270 248 0

$mr #missing/recorded

fat.i triceps.i thigh.i midarm.i

fat.i 0 284 297 279

triceps.i 286 0 295 270

thigh.i 254 250 0 248

midarm.i 294 283 306 0

$mm #missing/missing

fat.i triceps.i thigh.i midarm.i

fat.i 510 226 213 231

triceps.i 226 512 217 242

thigh.i 213 217 467 219

midarm.i 231 242 219 525

Figure 4.8 shows an example margin plot for the data which is MCAR. It shows the triceps
and thigh variables which are MCAR for 50% missingness. It can be seen in the example in
figure 4.8 that the box plots are similar and hence this suggests the data are MCAR.

Figures 4.9 and 4.10 show the results from the models produced using data which is MCAR.
Notice how for the complete case analysis, there are only four lines, this is because at 50%,
which is missing from the plot, there are no complete cases left in the data set, see table 4.3.

It can be seen that as the percentage of missing values increases, the confidence intervals
for the complete case analysis estimates increase, as there is less data available. However, the
confidence intervals for the mean imputation estimates generally decrease as the percentage
of missing values increases. This is because the missing values are replaced with the mean
values, which results in small standard error values, hence shrinking the size of the confidence
interval. The regression imputation methods, both single imputation and multiple imputation,
have varying confidence intervals as the percentage of missingness increases.

The complete case analysis method copes well, even with 50% of the data missing. The
estimates remain within the confidence intervals of the original model and they do not change
much from the original model. The other methods do not cope as well when the percentage of
missing data increases. Note how the mean imputation estimates are far from the original model
estimates, with very small confidence intervals in comparison to the other methods, see §4.7 for
more information. The regression imputation, both single and multiple, estimates cope relatively
well when there is only around 10% missingness, but there is then a pattern away from the
original model estimate as the percentage of missingness increases. Multiple imputation aims
to allow for the added uncertainty in the imputed values and hence the confidence intervals for
the multiple imputation estimates are wider than the corresponding ones for the single regression
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Figure 4.7: Image plot for the body fat data, 1000 subjects, MCAR

imputation estimates, for example when comparing 10% single regression imputation with 10%
multiple regression imputation. However, the 50% regression estimates, for both single and
imputation, have very small confidence intervals. This is due to the particular values which
were made to be MCAR. If this process was repeated with different missing values, it would be
expected that the confidence interval for 50% missingness would be larger than the one for 40%
missingness, to allow for the added uncertainty in the increasing number of imputed values.
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Figure 4.8: Triceps and thigh margin plot for the 1000 subjects, 50% MCAR
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Figure 4.9: Estimates and confidence intervals for the intercept and triceps: 10-50 percent
MCAR per variable
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Figure 4.10: Estimates and confidence intervals for thigh and midarm: 10-50 percent MCAR
per variable

43



4.4 Missing at Random, MAR

Next, it can be explored how the different methods cope when the data are no longer MCAR.
Figure 4.11 shows the image plot for the same data but with some values missing at random,
MAR. For values to be MAR, there must be relationships between the variables in the data.
One example which can be easily understood is that relating to age and blood pressure. For
example, if there are some blood pressure readings missing, it may be that the mean for recorded
values is higher than the mean for the true values. However, this pattern may be explained
through another variable, that is age. Younger people tend to have lower blood pressure than
older people, and younger people are generally less likely to have their blood pressure recorded.
Therefore, the missing values in blood pressure can be explained through another variable, age.
Now, to have data which is MAR in the body fat data set, there must be relationships present,
such as the relationship between the blood pressure and age variables. However, there are no
specific reasons to draw such relationships between the measurements of different body parts.
Hence, for illustrative purposes, these relationships will be constructed without any reasoning.
The relationships used are as follows:

• Order the subjects by their thigh measurement, small to large, and remove the top x% of
triceps values,

• Order the subjects by their thigh measurement, small to large, and remove the top x% of
midarm values,

• Order the subjects by their triceps measurement, small to large, and remove the top x%
of thigh values.

These relationships result in all three predictor variables having x% of their values removed.
As with the MCAR plots, the MAR plots will start with 10% missingness and end in 50%
missingness, with increases of 10% missingness. Table 4.4 shows the number of complete cases
after the missing values have been generated. The plots in figure 4.11 have all subjects ordered
by increasing body fat, hence the missingness in each of the variables is not in clear blocks, but
there are patterns resulting from the correlations between the predictors and the outcome. The
plots help to check the R code used and show the required patterns for the data to be MAR from
the relationships used.

Percentage Missing Number of Complete Cases (from 1000)
10 876
20 757
30 644
40 545
50 432

Table 4.4: Table of complete cases after missingness: MAR

The plots in figure 4.11 can also be summarised in a table showing how many subjects have
each combination of missing/present variables. Below is an example which is the summary for
the data which are MAR for 50% missingness. This summary can be used to assess whether
there appears to be any obvious patterns in the data in terms of which variables are missing.
There are 68 people who have both triceps and midarm measurements missing, recall these are
from the people with the top 50% of thigh measurements. There are also 68 people who have
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their thigh measurement missing only, recall these are from the people with the top 50% of
triceps measurements. Finally, there are 432 people who have their triceps, thigh and midarm
measurements missing. There are, therefore, patterns in this data, hence the missingness is not
MCAR.

> md.pattern(x) #MAR, missingness percentage: 50

fat.i triceps.i thigh.i midarm.i

432 1 1 1 1 0

68 1 1 0 1 1

68 1 0 1 0 2

432 1 0 0 0 3

0 500 500 500 1500

Next the pairs of variables can be investigated. It can again be seen that there are patterns in
the data as the only values present in the table are 0, 68, 432 and 500. These numbers are also
arranged in patterns, hence the data values are not MCAR.

> md.pairs(x) #mar, percentage missing: 50

$rr #recorded/recorded

fat.i triceps.i thigh.i midarm.i

fat.i 1000 500 500 500

triceps.i 500 500 432 500

thigh.i 500 432 500 432

midarm.i 500 500 432 500

$rm #recorded/missing

fat.i triceps.i thigh.i midarm.i

fat.i 0 500 500 500

triceps.i 0 0 68 0

thigh.i 0 68 0 68

midarm.i 0 0 68 0

$mr #missing/recorded

fat.i triceps.i thigh.i midarm.i

fat.i 0 0 0 0

triceps.i 500 0 68 0

thigh.i 500 68 0 68

midarm.i 500 0 68 0
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$mm #missing/missing

fat.i triceps.i thigh.i midarm.i

fat.i 0 0 0 0

triceps.i 0 500 432 500

thigh.i 0 432 500 432

midarm.i 0 500 432 500

Figure 4.12 shows an example margin plot for the data which are MAR. It shows the triceps
and thigh variables which are MAR for 50% missingness. For the data to be MAR it is expected
that the two box plots, along each axis, are different. It can be seen in the example in figure 4.12
that this is true for the body fat data set.

Figures 4.13 and 4.14 show the estimates and confidence intervals for the data which are
MAR. It can be seen that the complete case analysis copes relatively well as all the estimates,
even for 50% missingness, are close to the estimates for the original model. The confidence in-
tervals simply widen as the percentage of missing values increases, as there is less information
available for the complete case analysis. The mean imputation estimates are, as with the MCAR
estimates, far from the original model estimates, see §4.7. The regression imputation estimates,
both single and multiple imputation, seem to cope relatively well with the data MAR. However,
as the missingness increases, the estimates move further away from the original model estimate
and the confidence intervals increase as more imputations are carried out. This is expected,
since the estimates are likely to be less accurate when more values are missing and the wider
confidence intervals allow for the added uncertainty when more values are imputed. It can be
seen that the multiple imputations cope better than the single regression imputation. This is be-
cause the single regression imputation can change each time the method is run in R and hence
different values imputed. Therefore, multiple imputation can be more useful as it runs the im-
putation many times and combines the results to produce one summary output, whilst allowing
for the added uncertainty involved. As the number of imputations increases, from one in the
regression imputation method to 10 and then 100 in the multiple imputation methods, it can be
seen that the estimates and their confidence intervals become more stable. The estimates from
10% to 50% missingness begin to form a pattern and the confidence intervals slowly increase to
allow for the increasing number of imputations. Note that the performance of all methods will
be dependent on the particular values which are made ‘missing’. For example, mean imputation
will cope better if values close to the mean are removed, opposed to values far from the mean.
Mean imputation may, therefore, cope better in data sets where the variance of each variable
is relatively small. Regression imputation may also be affected by which particular values are
made missing. It is likely to cope better if the values removed are ones which will not affect
the regression line, rather than those which will cause the line to be moved far from the original
regression line.
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Figure 4.11: Image plot for the body fat data, 1000 subjects, MAR
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Figure 4.12: Triceps and thigh margin plot for the 1000 subjects, 50% MAR
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Figure 4.13: Estimates and confidence intervals for the intercept and triceps: 10-50 percent
MAR for 3 relationships
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Figure 4.14: Estimates and confidence intervals for thigh and midarm: 10-50 percent MAR for
3 relationships
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4.5 Missing Not at Random, MNAR

Finally, it can be investigated how the different methods cope when the data are missing not
at random. For the data values to be missing not at random, there must be values missing
which cannot be explained through another variable and the missingness must not be completely
random. One example involves blood pressure readings. The recorded blood pressure readings
from a group of people, where some values are missing, may be lower than the true readings for
that group of people. This may be because those with high blood pressure may have problems
associated with high blood pressure, such as headaches, and therefore may be more likely to
miss their appointments. Reasoning like this is not as easy for the body fat data set, but patterns
like this can still be constructed for the purposes of creating data values which are missing not
at random. The patterns used are as follows:

• Order by triceps measurements, then remove the smallest x% of triceps measurements,

• Order by thigh measurements, then remove the smallest x% of thigh measurements,

• Order by midarm measurements, then remove the smallest x% of midarm measurements.

This will result in each predictor having x% removed, with x starting at 10 and increasing,
in stages of 10, up to 50. Figure 4.15 shows the data with values MNAR, and table 4.5 shows the
number of complete cases for each percentage of missingness. The subjects in figure 4.15 are in
increasing order of body fat, hence the predictors are not quite as expected. However, there are
patterns in the figure as there are correlations between the outcome and predictors. The plots
help to show the missingness is as required, hence checking the R commands used.

Percentage Missing Number of Complete Cases (from 1000)
10 805
20 641
30 492
40 371
50 266

Table 4.5: Table of complete cases after missingness: MNAR

The plots in figure 4.15 can also be summarised in a table showing how many subjects have
each combination of missing/present variables. Below is an example which is the summary for
the data which are MNAR for 50% missingness. This summary can be used to assess whether
there appears to be any obvious patterns in the data in terms of which variables are missing. It
can be seen that there are obvious patterns in the values in the margin to the left of the table;
266, 68, 166, 166, 68, 266. As with the data which were MAR, the data which are MNAR have
patterns which, in this case, correspond to the methods used to create the missingness. As there
are patterns in this data, the missingness is not classed as MCAR.
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> md.pattern(x) #MNAR, percentage: 50

fat.i triceps.i thigh.i midarm.i

266 1 1 1 1 0

68 1 1 0 1 1

166 1 1 1 0 1

166 1 0 0 1 2

68 1 0 1 0 2

266 1 0 0 0 3

0 500 500 500 1500

Now the pairs of variables can be investigated one at a time. It can be seen that there are
patterns in the data as there are only a few values present in the tables and they are arranged in
patterns. As there are patterns in the data, the missingness is not considered to be MCAR.

> md.pairs(x) #MNAR, percentage: 50

$rr #recorded/recorded

fat.i triceps.i thigh.i midarm.i

fat.i 1000 500 500 500

triceps.i 500 500 432 334

thigh.i 500 432 500 266

midarm.i 500 334 266 500

$rm #recorded/missing

fat.i triceps.i thigh.i midarm.i

fat.i 0 500 500 500

triceps.i 0 0 68 166

thigh.i 0 68 0 234

midarm.i 0 166 234 0

$mr #missing/recorded

fat.i triceps.i thigh.i midarm.i

fat.i 0 0 0 0

triceps.i 500 0 68 166

thigh.i 500 68 0 234

midarm.i 500 166 234 0
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$mm #missing/missing

fat.i triceps.i thigh.i midarm.i

fat.i 0 0 0 0

triceps.i 0 500 432 334

thigh.i 0 432 500 266

midarm.i 0 334 266 500

Figure 4.16 shows an example margin plot for the data which are MNAR. It shows the
triceps and thigh variables which are MNAR for 50% missingness. For the data to be MNAR it
is expected that the two box plots, along each axis, are different. It can be seen in the example
in figure 4.16 that this is true for the body fat data set. Note that is it not possible to distinguish
between the data which are MAR in figure 4.12 and those which are MNAR in figure 4.16 from
these plots.

Figures 4.17 and 4.18 show the model estimates and 95% confidence intervals produced
when the data are MNAR. It can be seen from figures 4.17 and 4.18 that the complete case
analysis again performs well, even with 50% missingness. Although, as the percentage of miss-
ing values increases, the confidence intervals become wider. This is expected since there are
less subjects included in the complete case analysis as the percentageof increases. The mean
imputation estimates, as with MCAR and MAR, also give estimates far from the original model
estimates and with small confidence intervals. More information on mean imputation can be
found in §4.7. It can be seen that the regression imputations, both single and multiple, perform
less well compared with MCAR and MAR. Previously, with the MCAR and MAR estimates,
the estimates for 10% and sometimes 20% missingness were included within the confidence
intervals of the original model esimate. However, with the MNAR plots, none of the regression
imputation estimates, single or multiple imputation, are included within the original model con-
fidence intervals. Therefore, it would appear that these methods cope less well when the data
are MNAR. Even when multiple imputation is used, with 100 imputations, the estimates are still
not as close to the original model, even when missingness is just 10%. Note, however, how the
multiple imputation estimates become more stable than the single regression imputation esti-
mates. The multiple regression imputation estimates form a pattern, as they are the combination
of many different regression imputations, to give one more accurate estimate. As with the MAR
values, the performance of the different methods will depend upon which particular values are
MNAR.
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Figure 4.15: Image plot for the body fat data, 1000 subjects, MNAR
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Figure 4.16: Triceps and thigh margin plot for the 1000 subjects, 50% MNAR
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Figure 4.17: Estimates and confidence intervals for the intercept and triceps: 10-50 percent
MNAR for each predictor
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Figure 4.18: Estimates and confidence intervals for thigh and midarm: 10-50 percent MNAR
for each predictor
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4.6 Summary: Different Methods and Missingness Mechanisms

The body fat data set with 1000 subjects has been used to compare five different methods for
dealing with missing data, across three different missingness mechanisms; MCAR, MAR and
MNAR. The original data set, with no missing values, provided a basis against which to compare
these five different methods.

It has been seen that the complete case analysis appears to be the method which copes most
well throughout all types of missingness. Mean imputation appears to be the method which
copes least well. An investigation into why the mean imputation estimates were so poor is
carried out in §4.7. The complete case analysis copes better than expected, as in theory, it should
only cope well when the data are MCAR. The good performance for the MAR and MNAR data
may be unexpected. However, there may be reasons for this, which lie in the nature of the data.
The data is multivariate normally distributed and some variables, such as triceps and thigh, are
highly correlated; 0.92 (2dp). Consider figure 4.19 which is a simple graph showing just the
triceps and thigh variables for the 1000 subjects. The graph contains all the 1000 subjects, that
is, there are no missing values. The red line shows the regression line through these variables.

Figure 4.19: Body fat data, 1000 subjects, triceps against thigh

Now, if the data are MCAR, then the points removed should be such that they do not affect
the regression line, since there are not any points which would significantly alter the regression
line, as the two variables are highly correlated. Figure 4.20 gives an example where the points
are MCAR. The black points represent the points which are kept and the red points show those
which are missing. The black line shows the original regression line and the red line shows the
regression line after 20% of the points are MCAR. Therefore, as the regression lines are very
similar, complete case analysis could be expected to cope well when the data values are MCAR.

Next, if the data values are MAR, this means that one variable has been ordered and the
say, bottom section of the other variable have been removed. In this case, it may be that the
subjects are ordered by triceps measurements, and the 20% of subjects with the smallest triceps
measurements have their thigh measurements removed. Note that in practice there would be
an underlying reason why the two variables would be connected in such a way. This would
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Figure 4.20: Body fat data, 1000 subjects, 20% MCAR

result in points from the bottom left corner of the plot being removed, especially since the two
variables are so highly correlated, see figure 4.21. Removing these points has very little impact
on the regression line through the rest of the data. This holds true even if half of the values are
removed, see figure 4.22. Both the spread of the data and the high correlation of the variables
help to maintain the original regression line through the variables. This basic idea can then
be extended to include all the variables. Therefore, when the points are MAR, the complete
case analysis still copes well. The main change as the percentage of missingness increases,
is the width of the confidence intervals associated with the estimates, since more subjects are
excluded from the analysis.

The same idea can be applied to the data values which are MNAR. Since the two variables
are so highly correlated, it is likely that the subjects with say, the smallest 20% triceps mea-
surements which then have their thigh measurements removed, for MAR, are likely to be a very
similar group of people to those who simply have their thigh measurements removed as they
are in the smallest 20% of thigh measurements, for MNAR. Therefore, for this data set, the
complete case analysis would also be expected to cope well when the data values are MNAR,
see figure 4.23.

The regression imputation estimates appear to cope relatively well when the data values are
MCAR, when the missingness is around 20% or less, but estimates poorly when the missingness
is above this percentage. The regression imputation estimates appear to be most accurate when
the data are MAR, with the estimates closest when the missingness is around 20% or less.
However, the regression imputation estimates do not cope well when the data values are MNAR.
The regression imputation estimates are likely to cope well when a small percentage of data
values are MCAR since the regression line through the data, see figure 4.19, is unlikely to be
affected greatly. Hence the imputed values are likely to be close to the true values. However, as
the percentage of missingness increases, the regression line may change depending upon which
particular values are missing. If the missing values are those which can affect the regression
line, which is more likely as the percentage increases, then the imputed values may not be as
accurate. When the data values are MAR, it may be expected that the method copes less well
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Figure 4.21: Body fat data, 1000 subjects, 20% MAR

than it does. However, since some of the variables are highly correlated and well spread, the
effect of the missing values is reduced. For example, if a small percentage of the data values in
figure 4.19 are MAR and replaced by regression imputed values, the resulting linear regression
line is unlikely to be greatly affected, since many of the data points already lie close to the
regression line. However, as the percentage of missing values increases, the more likely the
regression line is to differ from the original regression line through the data points. This results
in the imputed values being less accurate and as a consequence, the final linear regression line
may not be as accurate. When the data values are MNAR, the chances of the regression line
differing from the original regression line are increased, since the values are removed from one
area of the regression line, which makes the new line for imputation more likely to move. This is
more likely once the percentage of missingness increases or if the data values are less correlated.
However, it can affect all levels of missingness and strengths of correlations. Therefore, it is
understandable that the regression imputation estimates do not cope well when the data are
MNAR.

The multiple imputation estimates, which were calculated using regression imputation, can
be compared with both the original model estimates and the single regression imputation esti-
mates. The multiple imputation methods performed reasonably well for the MCAR and MAR
data values, but only when the missingness was around 10% or so. Previous simulation studies
by Rubin (1987) suggest that for missingness up to 20%, the number of imputations can be
as low as 3. Therefore, using 10 and 100 imputations should be more than sufficient. As the
missingness percentage increased, these methods were less accurate. They did not, however,
perform well when the data were MNAR. The reasoning behind the different performance lev-
els for the different missingness mechanisms can be extended from the reasoning for the single
regression imputation estimates, since the same method was used. However, the multiple im-
putation estimates can be compared with the single regression imputation estimates within each
missingness mechanism. For the MCAR data values, all numbers of regression imputations
perform in a similar way. This is because the regression line through the data is less likely to
be affected when the data are MCAR, hence the regression lines used for imputation are likely
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Figure 4.22: Body fat data, 1000 subjects, 50% MAR

to all be similar. However, when the data are MAR or MNAR, the regression lines may differ
considerably each time the imputation regression line is drawn. This can result in the single
imputation estimates being less consistent. Therefore, it is advantageous to use multiple impu-
tation, so an estimate can be taken using a summary of several different imputations. It can be
seen from the graphs that the estimates and confidence intervals appear to be far more stable for
the multiple imputations that the single regression, with the 100 imputations more so than the
10 imputations.

It has been seen that the different methods cope with varying success over the different
missingness machanisms for particular predictors. However, the overall model should also be
considered. It appears that for each method, if it over/under-estimates the intercept and triceps
coefficient, then it will under/over-estimate the thigh and midarm coefficients. Note how similar
the intercept/triceps graph patterns are and the thigh/midarm graph patterns are. Note also how
the intercept/triceps estimates on the original model are positive and the thigh/midarm estimates
are negative. It appears the methods either cause all estimates to be more positive/negative than
they should be, or less so. This assumes that the original model can be considered to be ‘most
correct’ solely for the purpose of these comparisons. That is, the estimates are either all further
from zero than they should be, or all closer to zero than they should be. For all mechanisms,
regression imputation, both single and multiple, and mean imputation, have given all estimates
closer to zero than they should be. This is clearer as the percentage of missingness increases.
The complete case analysis has generally remained close to the original model estimates. Gen-
erally, however, the estimates for the intercept and triceps are positive, as in the original model,
and the thigh and midarm estimates are negative. The exceptions are the mean imputation es-
timates, which are considered separately in §4.7 and the regression imputations for the 50%
MCAR data. The signs of the regression imputation estimates, both single and multiple, are
affected when the missingness is 50%, but it must be considered just how high this percentage
of missingness is. It has already been discussed how removing just a few significant points
can greatly affect the performance of the regression imputation method. Therefore, any conclu-
sions drawn from the data sets with missing values, regarding which variables are positively or

61



Figure 4.23: Body fat data, 1000 subjects, 20% MNAR

negatively associated with the outcome, are generally correct.
Similar simulation studies have also been carried out by Little (1979), Chen et al. (2007) and

Rubin (1976). These studies used different imputation methods but their results showed how,
generally, it is beneficial to use a form of imputation rather than complete case analysis. The
final results are usually less biased and the methods allow for less loss of information. Some
of the results seen in this study have seemed unusual, for example, how well the complete case
analysis performed when the data were MAR and MNAR. One explanation may be that in this
study, there were no missing values in the outcome. Missingness was generated in the outcome
in the similar simulations studies mentioned, and well explained in Little (1979). If missingness
was also generated in the outcome, then different results may have been seen.

4.7 Mean Imputation

The mean imputation estimates for all the missingness mechanisms were far from those for
the original model. This section aims to further investigate the reasons for this. It has already
been discussed that the confidence intervals for the mean imputation methods are smaller. The
confidence intervals are likely to be smaller as the imputed values are the mean and hence the
variance of the variables is reduced. The confidence intervals and accuracy of the estimates
will both depend upon which particular values are missing. If there are a small percentage of
missing values and they are close to the mean, then mean imputation will cope reasonably well
and the confidence intervals will not change much from those for the original model. However,
it is more likely that the missing values will not all be close to the mean, nor the percentage of
missingness will be small enough.

Figure 4.25 shows data which are MCAR for different percentages of missingness. The
smallest percentage considered previously has been 10% and the method has not coped well
under any of the missingness mechanisms. MCAR has been selected since this is the mechanism
under which most methods should cope best. Figure 4.25 considers from 0.1% missingness up
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to the 10% used previously. The percentages in between are; 0.5%, 1% and 5%. It can be seen
from the plots that as the percentage of missingness increases, the estimates drift further away
from the original model estimate, shown in black. This suggests that, for data MCAR, the mean
imputation estimates may be acceptable for very small amounts of missing data. The numbers of
missing values from these plots are shown in table 4.6. Note these number are out of 4000; 1000
subjects × 4 variables. Mean imputation therefore only appears to cope, for this data set, when
the missingness is around 0.1%, which corresponds to 3 missing values across the variables.
For the other percentages shown, the estimates and confidence intervals are entirely outside the
confidence intervals for the original model.

Percentage of Missingness, MCAR Number of Missing Values
0.1 3
0.5 20
1.0 43
5.0 208

10.0 410

Table 4.6: Numbers of missing values, MCAR

Figure 4.24: Body fat data, 1000 subjects, mean imputation

The performance of the mean imputation method will depend heavily on which particular
values are missing. Figure 4.19 can be used to help explain this. The red line shows the re-
gression line through all the data points for the two variables; thigh and triceps. Note there are
no missing values. Now, in figure 4.24 there are some data values which are MCAR in thigh,
which have been replaced with the mean value for the thigh variable. This would result in the
data values becoming more focused around the mean of thigh, that is, around the centre of the
graph. This therefore considerably alters the regression line through the data, shown in red,
hence amending the linear regression model for the output. Mean imputation, would in theory,
be most useful if the missing values were those close to the mean. However, this is likely to be
rare in practice, and certainly would not occur if the data values are MCAR, unless the variance
of the variables is very small indeed, that is, all values are close to the mean value. If the values
were MAR or MNAR, it is possible that just those values close to the mean could be missing.
However, there still needs to be a reasoning for these values to be missing. If the values are
MNAR, often the largest or smallest values will be missing, which would again greatly affect
the regression line through the data points once these missing values had been replaced with the
mean value for that variable. Replacing even just one or two large or small values by the mean
could change the regression line enough to provide an overall result very different from that for
the original data set.
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Figure 4.25: Estimates and confidence intervals for mean imputation: Differing % MCAR per
variable
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4.8 The ‘mice’ Package: Body Fat Data

Several decisions had to be made in order to carry out the calculations on the body fat data set
using the ‘mice’ package. These are specified below.

• The data were assumed to be MAR. Comparisons were also drawn between those known
to be MAR and MNAR.

• All columns were given the same method of imputation, so comparisons between methods
could be made. All the variables are continuous, hence only certain options are available.
The methods used were,

– MEAN: for mean imputations,

– NORM.NOB: for regression imputation,

– NORM: for stochastic regression imputation,

– NORM: for the multiple imputations.

• The predictor matrix was generated using correlations, since there was no prior informa-
tion available or reasoning to suggest another matrix would be more suitable.

• The imputations were carried out from left to right, using the default ordering.

• The number of imputations was set to one for the mean, regression and stochastic regres-
sion methods and increased to 10 then 100 for the multiple imputations.

• Any subjects who had their outcome variable imputed, that is, body fat, were removed
from the analysis, as required, so the results were as accurate as possible.

• A number of different percentages of missingness were tried in R to see whether the
results were affected.

– Originally 10% − 50% missingness was generated across all the variables, before
10%− 50% missingness was generated in each of the variables.

– Missingness was also tested at 5%− 25%, in 5% increments.

– Missingness was also tested at 20%− 80%, in 20% increments.

• Transformations of the data set were investigated to aid understanding of the results ob-
served.
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Chapter 5

Missing Data: AAA Surgery Data

This chapter aims to carry out multiple imputation on the data set introduced in chapter 2. First,
summaries of the data set will be generated to investigate the missingness. Next, the ‘mice’
package in R, see §3.8 for more details, will be used to carry out the multiple imputation steps.

5.1 Missingness Summaries

This section will produce summaries of the missingness to try to investigate the missingness
mechanism and any obvious patterns. Both tables and plots will be used to summarise the
missingness before the imputation steps are carried out.

The first table tried was the one generated using the md.pattern command in the ‘mice’
package in R. However, since the data set is so large, the full table generated was 1047 by 24,
which could not be displayed in R, nor would it be useful for analysis. Since the information
cannot easily be summarised from the output, especially as the totals for each row are displayed
in the margin and not in the matrix itself, it is difficult to use this command for this data set.
Possible alternatives may be to use either a subset of the variables which may be of particular
interest, or to use a random sample of the subjects to carry out this stage of the analysis on.
However, for this study, the alternative summary method of investigating each pair of variables
will be used. These are shown in appendix A; there is one table for the number of subjects
with both variables present, another for both variables missing and a third for the first variable
present and the second missing. Note that the fourth option where the first variable is missing
and the second is recorded, can be calculated from the information provided in appendix A. It
can be seen from these tables that there appears to be no obvious patterns in the numbers. This
therefore suggests that the values may be MAR.

Next, plots will be used to investigate any missingness patterns within the data. Figure 5.1
shows a margin plot for the age and haemoglobin variables. The blue points show the subjects
who have a recorded value for both age and haemoglobin. The red dots show the subjects who
have a recorded value for one variable but not the other. The subject is placed along the axis of
the recorded variable. The orange dot shows the subjects who do not have a recorded value for
either variable. The number of subjects without a recorded value for either variable is also listed
in the bottom left corner of the plot. It can be seen that there are 66 subjects who are missing
both age and haemoglobin values. The red box plots along the axes show the distribution of the
missing values, whilst the blue box plots show the distribution of the recorded values. If the data
are MCAR, these two box plots are expected to be the same. It can be seen from figure 5.1 that
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the box plots are very similar, which does not dismiss the possibility of the data being MAR.

Figure 5.1: Margin plots of the AAA variables: Age and haemoglobin

Each of the pairs of variables were checked to see whether the assumption of MAR could be
dismissed or if any patterns emerged. The majority of the plots were similar to figure 5.1 where
the red and blue box plots looked very similar and there are no obvious patterns in the scatter
plots. However, there were some box plots which differed a little, mainly when haemoglobin
was one of the variables in the pair. The most extreme case is shown in figure 5.2 where blood
pressure is plotted against pulse. It can be seen that the box plots are not as they are in figure
5.1. However, since this is the most extreme case and all the other box plots seem satisfactory,
the data will be assumed to be MAR, which is not an unrealistic assumption.

An alternative plot which can be used to investigate any patterns in the missingness of the
data is a parallel box plot. This plot generates two box plots for each variable; one for the miss-
ing values and one for the recorded values, similar to the margin plots above. It uses a basis
variable which is a variable of interest, against which to compare the other variables. The first
box plot in white shows the standard box plot for the variable of interest. There are then blue
and red box plots for each of the remaining variables against the variable of interest. Figure
5.3 shows an example, which uses age as the variable of interest. The blue boxes represent
the observed values while the red boxes represent the missing values. These are show in pairs
and from left to right correspond to; Haemoglobin, WhiteCellCount, Urea, Sodium, Potassium,
LowestSystolicBP Intraoperative and HighestPulse Intraoperative. The white box is the stan-
dard box plot for the age variable. Since the box plots are all very similar, this suggests that the
data are not MNAR.

All the different parallel box plots were produced, with each of the different continuous
variables used as the variable of interest. Each of the parallel box plots were similar to that
in figure 5.3 where the box plots are all very similar. There were slight differences for the
haemoglobin and blood pressure plots, but these were only minor differences with the red plots
slightly higher/lower than the blue plots. The most noticeable differences were in the pulse par-
allel plot, shown in figure 5.4. It can be seen that the red plots are all higher than the blue plots,
for each of the variables. The variables are again in the order of; Haemoglobin, WhiteCellCount,
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Figure 5.2: Margin plots of the AAA variables: BP and pulse

Urea, Sodium, Potassium, LowestSystolicBP Intraoperative and HighestPulse Intraoperative. It
can be seen, as with the margin plot in figure 5.2, that the biggest difference is between the blood
pressure and pulse variables. However, since all the other plots were satisfactory and this plot is
not vastly different, the data will be assumed to be MAR.

Recall also that additional information regarding missingness in the AAA surgery data set
was also provided in chapter 2, including the percentages of missingness in the different vari-
ables.
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Figure 5.3: Parallel box plot of the AAA variables: Age

Figure 5.4: Parallel box plots of the AAA variables: Pulse
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5.2 Multiple Imputation Method

There are seven steps which should be considered before carrying out the imputation process,
as mentioned in §3.8. These are briefly listed below, along with the decisions made for each,

1. From the plots in §5.1, it can be seen that there is not sufficient evidence to conclude that
the missing values are not MAR, therefore the assumption of MAR can be assumed.

2. The following methods were chosen for each column of the data, depending on the nature
of the data. Generally, logistic regression was chosen for the binary variables, polyto-
mous regression was chosen for the categorical variables and predictive mean matching
was chosen for the continuous variables. Predictive mean matching is simply hot deck
imputation or pattern matching as previous described in chapter 3, and was chosen so no
implausible values would be imputed. Logistic regression and polytomous regression use
the same method as the regression imputation methods mentioned previously in chapter
3, but simply with the form of regression suitable for the variable being imputed. Hospital
ID was excluded since it had no missing values. Table 5.1 lists the methods used.

Variable Method
Gender ”logreg”

admissionMode ”polyreg”
Diabetes ”logreg”

CurrentSmoker ”logreg”
RenalDialysis ”logreg”

RenalTransplant ”logreg”
PreviousAorticSurgeryStent ”logreg”

AAASurgery ”polyreg”
Haemorrhage ”logreg”

Stroke ”polyreg”
MyocaridalInfarct ”logreg”

CardiacFailure ”logreg”
Hypotension ”logreg”

dischargeStatus ”logreg”
AgeYears ”pmm”

Haemoglobin ”pmm”
WhiteCellCount ”pmm”

Urea ”pmm”
Sodium ”pmm”

Potassium ”pmm”
LowestSystolicBP Intraoperative ”pmm”

HighestPulse Intraoperative ”pmm”
hospitalID ””

Table 5.1: Imputation methods used for the AAA surgery data

3. The predictor matrix could not be selected using the quickpred function in the ‘mice’
package in R. Recall that the quickpred function generates the prediction matrix by
considering the correlations of the variables, and there are settings which can be edited,
such as the threshold for the correlations, for two variables to be considered as predictors.
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This cannot be used for the AAA surgery data as there are many categorical and binary
variables, where the correlations would not be sensible. Therefore, prior knowledge must
be used to create a predictor matrix which is plausible. The predictor matrix chosen was
developed using the help of clinicians and is shown below in table 5.2.

Gen aM D/b Smk D/l T/pl Pre AAA H/h Str Myo Car Hyp Sta Age H/g WC Ure Sod Pot BP Pul ID
0 1 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 1 1 1 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0
1 0 1 0 0 0 0 0 0 1 1 1 0 1 1 0 0 0 0 0 1 1 0
0 0 1 0 0 1 0 0 0 1 0 0 0 1 1 1 0 0 0 0 0 0 0
0 0 1 0 1 0 0 0 0 1 0 0 0 1 1 1 0 0 0 0 0 0 0
0 0 1 1 1 1 0 0 0 1 1 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 1 1 0 0 0 1 0 0 0 0 1 0 0 0 1 0 1 0 0
1 0 0 0 0 0 0 1 0 1 1 1 1 1 1 0 0 0 1 0 1 1 0
1 0 0 1 0 0 0 1 1 0 1 1 1 1 1 0 1 0 1 0 1 1 0
1 0 1 1 0 0 0 1 1 1 0 1 1 1 1 1 0 0 1 1 1 1 0
1 0 1 1 0 0 0 1 1 1 1 0 1 1 1 0 0 0 1 0 1 1 0
0 0 0 0 0 0 0 1 1 1 1 1 0 1 1 0 1 0 1 0 1 1 0
1 0 1 1 0 0 0 0 1 1 1 1 1 0 1 0 0 0 1 0 1 1 0
1 1 0 1 0 0 0 0 0 1 1 1 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 1 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0
0 0 0 0 1 1 0 0 1 1 0 0 1 0 1 0 0 1 0 0 0 1 0
0 0 0 0 1 1 0 1 0 1 0 0 0 0 0 0 1 0 0 0 0 1 0
0 0 0 0 1 1 0 1 1 1 0 0 0 1 1 0 0 0 0 1 1 1 0
0 0 0 0 1 1 0 0 1 1 0 0 0 0 0 0 0 0 1 0 1 1 0
0 0 0 0 1 1 0 1 1 1 1 1 1 1 1 0 0 0 1 0 0 0 0
0 0 0 0 1 1 0 0 1 1 1 1 1 1 1 0 1 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 5.2: Table showing the predictor matrix used for the AAA surgery data

4. Passive imputation is not necessary in this example, as there are not variables which are
functions of the other variables. For instance, BMI would be a function of height and
weight.

5. The visiting scheme was set to the default, that is, the order in which the variables were
imputed was simply from left to right.

6. The number of iterations was set to the default of 5. More imputations were desired but
were limited by the computation time since the data set was so large and there were many
values to impute.

7. The number of imputed data sets was set to 10. Again, more were desired but were limited
by the computation time.

Once all the steps had been considered, the mice command in R could be run. Once
finished, the subjects with imputed values for their outcome, dischargeStatus, needed to be
removed. The subjects with no recorded outcome need to be involved in the imputation stage,
to assist with the imputation of other variables, but must be removed once the imputation stage
is complete so as not to bias the results. There were 443 such subjects. Once removed, the
remaining subjects could have their imputed values checked to see whether they were plausible.
Figure 5.5 shows examples of stripplots which can be used to check the distributions of the
recorded and imputed data sets. The plot shows the ten imputed data sets, 1-10, and the data
before imputation, 0. It can be seen that, for both the example variables, the observed data
(blue) and the imputed data (red) appear to be similar. Under MCAR, the univariate distributions
are expected to be identical, but under MAR they may differ. Plots were generated for all the
variables with imputed values and all the imputed values seemed reasonable, that is, the imputed
values were similar to the recorded values. Next, regression models for each of the 10 imputed
data sets could be formed. The regression models could then be pooled using Rubin’s rules and
summarised to form one overall regression model with estimates and confidence intervals.
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Figure 5.5: Stripplots used to check the distributions of the recorded and imputed data sets
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5.3 Results

The variables used in the regression model were those suggested by Tang et al (2007). Tang et
al (2007) carried out a study which focused on developing a model using the same variables and
the same outcome. Their study used data collected in the UK between 2002 and 2004. However,
Tang et al (2007) used only the 2718 complete cases to form the final regression model with the
selected variables. These variables are listed below,

• Gender,

• admissionMode,

• AgeYears,

• Urea,

• Sodium,

• Potassium,

• Haemoglobin and

• WhiteCellCount.

These variables were used to form the regression models from the imputed data sets, with
dischargeStatus, that is whether or not the subject survived the surgery, as the outcome. The
regression models were then combined using Rubin’s rules, see §3.5, to form one overall regres-
sion model. This is shown in table 5.3. Table 5.3 shows the estimates for each variable along
with their standard error and 95% confidence interval.

est se lo 95 hi 95
(Intercept) -16.42 228.78 -464.88 432.04
GenderM -0.32 0.14 -0.58 -0.05

admissionMode1 12.00 228.77 -436.44 460.44
admissionMode2 13.37 228.77 -435.07 461.80

AgeYears 0.04 0.01 0.02 0.05
Urea 0.02 0.01 0.01 0.03

Sodium 0.00 0.02 -0.03 0.03
Potassium 0.03 0.04 -0.05 0.11

Haemoglobin -0.19 0.03 -0.25 -0.14
WhiteCellCount 0.06 0.01 0.03 0.09

Table 5.3: Table showing the results from the overall model for the AAA surgery data

The estimates in table 5.3, considering they are based on a different data set, are close to
those given by Tang et al (2007), with most estimates inside or slightly outside the confidence
intervals. The results from Tang et al (2007) are shown in table 5.4.

The estimates from this model can be compared to the ones generated using just the com-
plete cases for the same subset of variables. These are shown in table 5.5. It can be seen that the
estimates are generally similar, but the confidence intervals for the complete case analysis are
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Estimate
(Intercept) -2.257
GenderM 0.1511

admissionMode2/3 0.9940
AgeYears 0.05923

Urea 0.001401
Sodium -0.01303

Potassium -0.03585
Haemoglobin -0.2278

WhiteCellCount 0.02059

Table 5.4: Table showing the results from Tang et al (2007)

wider. This is as expected, since the complete case analysis has less information, in fact only
1488 subjects compared to the 14010 subjects used for the multiple imputation analysis. There
is not a great difference between the width of the confidence intervals as the multiple imputa-
tion analysis allows for the added uncertainty in imputing the missing values hence has fairly
wide confidence intervals. Notice that the signs of the estimates remain the same for the two
models. Therefore, the interpretation of each variable in the model with respect to the outcome
of dischargeStatus, remains the same. Thats is, whether the variable being considered increases
or decreases the chances of a patient surviving the surgery, remains the same.

Estimate Std. Error z value Pr(>|z|)
(Intercept) -7.3882 3.7831 -1.95 0.0508
GenderM -0.2513 0.2190 -1.15 0.2511

admissionMode2 0.5333 0.2566 2.08 0.0377
AgeYears 0.0447 0.0136 3.30 0.0010

Urea 0.0179 0.0099 1.81 0.0703
Sodium 0.0299 0.0250 1.20 0.2319

Potassium 0.0276 0.1759 0.16 0.8753
Haemoglobin -0.2204 0.0481 -4.58 0.0000

WhiteCellCount 0.0561 0.0241 2.33 0.0198

Table 5.5: Table showing model estimates for the complete cases analysis for the AAA surgery
data

Figure 5.6 shows these three models compared graphically. The different colours show the
different models, whilst the different lines within each colour show the estimates in the order
given in the tables. The first graph shows all the variables, whereas the second and third graphs
zoom further in. It can be seen how they all produce similar results.
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Figure 5.6: Graphs of all three model types
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5.4 Interpretation

The model in table 5.3 shows the selected variables and their estimated effect on mortality. It
can be seen that there are several variables which increase the chances of mortality, these are;

• admissionMode: elective or unplanned,

• being older,

• higher urea levels,

• higher potassium levels and

• higher white cell count.

There are also variables which are estimated to decrease the chances of mortality, which are;

• being male and

• a higher haemoglobin level.

However, some of the confidence intervals, such as those for admissionMode, Sodium and
Potassium, include both positive and negative values, showing these variables may not be sig-
nificant to mortality. Note the estimate for Sodium is also listed as 0 (2dp). Recall that, due
to computation restrictions, fewer iterations and imputations than desired were carried out. In-
creasing these may have had an effect on the estimated values shown in table 5.3.

Regression models were used as the final stage of analysis, but note these are based on linear
associations and not more complicated relationships. There are more sophisticated variable
selection methods and models which could have been chosen, but these areas were not the focus
for this study. However, regression models are still a useful form of analysis for future subjects
and could be of use to others considering AAA surgery.
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Chapter 6

Conclusions

This study has investigated several different missingness mechanisms, how they occur and how
summary plots can be used to try to predict the missingness mechanism. It has also consid-
ered many different solutions for coping with missing data, from simple complete case analysis
to multiple imputation as shown in chapter 5. Examples have been given throughout for the
different mechanisms and methods and some of these methods have been tested to see how
they perform under the different missingness mechanisms. Reasoning has also been sought for
the behaviour seen during these comparisons. Lastly, all the theory and practice was used to
tackle a large and complicated data set which contained missing values. Different methods were
combined to produce a more suitable method for the analysis with missing data.

It has been noted that missing values occur for a number of different reasons and these
help to determine the missingness mechanism. The missingness mechanism is important when
choosing a method to deal with the missing values, although it cannot be easily determined from
the data alone. The different methods have been shown to be useful in certain circumstances,
with some more desirable due to their simplicity, others due to their ability to cope with com-
plicated data; such as binary, categorical and numerical data all in the same data set. Whenever
a data set has missing values, it should be carefully considered why the data values are missing
and if they are MAR or not. The method then selected should be carefully chosen, with consid-
eration taken for the missingness mechanism, the nature of the data and the required outcome
from the analysis.

A range of different sources have been used throughout this study to obtain the information
required. Where possible, the original journal articles have been used for information rather
than summaries in books or on websites. Unfortunately, many articles, books and websites
referred back to Rubin (1987) but this book could not be sourced. If it had been available, more
information regarding Rubin’s rules and associated work could have been provided.

The data sets in this study have been based on medical data, but missing data can occur in
other areas too. The methods described can be used not only in medical research, but wherever
missing data occurs, giving more suitable methods and usually an analysis with less bias and
less loss of information.
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Appendix A

AAA Data: Tables of Variable Pairs,
Recorded/Missing Values

There follows three tables, which contain the numbers of subjects who have,

• Both the variables in the pair recorded,

• One variable in the pair missing and the other recorded,

• Both variables in the pair missing.

The results can then be used to investigate any patterns which may occur in the data set. For
example, there may be a large amount of subjects who have a certain pair of variables missing.
These patterns can lead to conclusions as to whether or not the data appear to be MAR.
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Appendix B

R Code

This appendix will give samples of the R code used during this study, along with brief descrip-
tions.

B.1 Chapter 2

aaa<-read.csv(file="D:/Uni Work/Masters #initial data as a csv file

/Dissertation/aaa_missing.csv", header=TRUE, sep=",")

fisher.test(Gender, Status) #odds ratios

counts1 <- table(adMode,

hospitalID) #stacked barchart

barplot(counts1, main="Summary of Hospital

ID and Admission Mode",xlab="Hospital ID",

col=c("blue","orange","blue","blue","blue",

"orange","orange"),legend =rownames(counts1))

B.2 Chapter 3

pairs(body) #pairs plot of the data

Xcomp=na.omit(X) #complete cases analysis

modela=lm(Xcomp[,1]˜Xcomp[,2]+Xcomp[,3]+Xcomp[,4]) #models

B.2.1 The Graphs Coding, eg, figure 3.3

names<-c("orig", "comp", "mean", "reg", #name the methods

"sto reg", "multi10", "multi100")

intercept<-c(117.085,18.55,-9.46, #list the intercepts
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-120.33,-17.61,-41.6,-10.46)

x<- 1:7*4-1 #set up the x-axis

CI.up<-c(312.7,362.4,11.78,172.89,

95.44,173.5,225.1) #upper CI

CI.dn<-c(-78.5,-325.3,-30.7,-336.10,

-208.1,-256.6,-264.03) #lower CI

plot(intercept˜x, col=c("black", "red", "blue", #plot graph

"green", "orange", "pink", "purple"), cex=1,

axes=FALSE, frame.plot=TRUE, xlim=c(1,28),

ylim=c(-330,370), xlab="Model Type", ylab=

"Estimate", main="Intercept Estimates and

Confidence Intervals")

Axis(side=1, labels=FALSE) #label axes

Axis(side=2, labels=TRUE)

axis(1, at=c(3,7,11,15,19,23,27), labels=names) #label methods

arrows(x,CI.dn,x,CI.up,code=3,length=0.05, #add CIs

angle=90,col=c("black", "red", "blue", "green"

, "orange", "pink", "purple"))

abline(h=117.085,col="lightgray",lty=5) #add ’original’ lines

abline(h=312.7,col="lightgray",lty=3)

abline(h=-78.5,col="lightgray",lty=3)

B.3 Chapter 4

sigma=cov(body)

sigma #find covariance matrix of 20 subjects

mu=c(mean(fat),mean(triceps),mean(thigh),mean(midarm))

mu #find mean vector of 20 subjects

is.vector(mu)

set.seed(1) #set the seed

sample=mvrnorm(n=1000,mu,sigma,empirical=TRUE)

sample #simulate 1000 subjects from 20

library(mice) #use mice package

quickpred(sample) #prediction matrix

image(is.na(t(X))) #image plots of missingness

B.3.1 MCAR

N <- 1000 #number of subjects

88



n <- 4 #number of variables

X <- matrix(sample, N, n) #matrix

pMiss <- 0.40 #percent of missing values (20%)

set.seed(1) #set the seed

idMiss <- sample(1:N, N*pMiss) #sample subjects

nMiss <- length(idMiss) #number missing

m <- 3 # maximum number of missing variables within subject

set.seed(1)

howmanyMiss <- sapply(idMiss, function(x) sample(1:m, 1))

set.seed(1) #set the seed

lapply(howmanyMiss, function(x) sample(1:n, x))

set.seed(1) set the seed

misscols<-lapply(howmanyMiss, function(x) sample(1:n, x))

for (i in 1:nMiss){ #set missing values o=to NA

for (j in misscols[[i]]){

X[idMiss[i],j]<-NA

}

}

B.3.2 MAR

sample2=sample[sort.list(sample[,3]), ] #order by thigh

sample3=sample[sort.list(sample[,2]), ] #order by triceps

pMiss <- 50 #percent of missing values

N <- 1000 #number of subjects

sample2[,2][1:(N * pMiss / 100)]<-NA

#order: thigh, remove triceps

sample2[,4][1:(N * pMiss / 100)]<-NA

#order: thigh, remove midarm

sample5=sample2[sort.list(sample2[,1]), ]

#reorder by fat

sample3[,3][1:(N * pMiss / 100)]<-NA

#order: triceps, remove thigh

sample4=sample3[sort.list(sample3[,1]), ]

#reorder by fat

sample6<-cbind(sample5[,1],

sample5[,2], sample4[,3], sample5[,4])

sample6 #combine columns to form new matrix: MAR
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B.3.3 MNAR

sample2=sample[sort.list(sample[,2]), ] #order: triceps

pMiss <- 50 #percent of missing values

N <- 1000 #number of subjects

sample2[,2][1:(N * pMiss / 100)]<-NA #removed small triceps

sample3=sample[sort.list(sample[,3]), ] #order: thigh

sample3[,3][1:(N * pMiss / 100)]<-NA #removed small thigh

sample4=sample[sort.list(sample[,4]), ] #order: midarm

sample4[,4][1:(N * pMiss / 100)]<-NA #removed small midarm

sample5=sample2[sort.list(sample2[,1]), ] #reorder: fat

sample6=sample3[sort.list(sample3[,1]), ] #reorder: fat

sample7=sample4[sort.list(sample4[,1]), ] #reorder: fat

sample8=cbind(sample5[,1],sample5[,2],sample6[,3],sample7[,4])

sample 8 #combine to create new data set: MNAR

B.4 Chapter 5

marginplot(aaa[,c("AgeYears","Haemoglobin")], #marginplots

col=c("blue","red","orange"), cex=1.5,

cex.lab=1.5, cex.numbers=1.3, pch=19)

pbox(aaacont,pos=1,int=FALSE,cex=1.2) #parallel boxplots

library(lattice) #use lattice package

com <- complete(imp2, "long", inc=T) #create stripplots

col <- rep(c("blue","red")[1+as.numeric(is.na

(imp2$data$Sodium))],11)

stripplot(Sodium˜.imp, data=com, jit=TRUE, fac=0.8,

col=col, pch=20,

cex=1.4, xlab="Imputation number",main="Sodium")

imp2=mice(aaa,m=imputations,imputationMethod=c(

"logreg", "polyreg", "logreg", "logreg", "logreg",

"logreg", "logreg", "polyreg", "logreg", "polyreg",

"logreg", "logreg", "logreg", "logreg", "pmm", "pmm",

"pmm", "pmm", "pmm", "pmm", "pmm", "pmm", "" ),

predictorMatrix=pred, seed=204, printFlag=T)

#mice on the AAA surgery data
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imp2$imp$dischargeStatus=matrix(nrow=443,ncol=10,NA)

#set the imputed outcomes to NA and remove subjects

fit3<-with(imp2,glm(dischargeStatus˜Gender+

admissionMode+AgeYears+

Urea+Sodium+Potassium+Haemoglobin+WhiteCellCount,

data=aaa, family=binomial)) #form regression model

est3<-pool(fit3) #pool: Rubin’s rules

summary(est3) #model summary
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