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Abstract

This dissertation examines how households consume gas throughout the day, using data

collected from smart meters. The goal is to identify groups of households whose con-

sumption behaviours suggest they are at higher risk of fuel poverty, using socio-economic

factors as indicators of fuel poverty. To introduce the concept of consumption profiles

and to aid understanding, there is an analysis of some sampled households’ individual gas

use, looking at differences between households, and differences between days. The anal-

ysis includes various ways to visualise consumption with 2D and 3D plots. The methods

explored for grouping households are Principal Component Analysis, Self-Organising

Maps (SOMs), and k-means clustering. SOMs are covered in the greatest depth with

an comparison of parameter choices used in literature. k-means clustering is applied

to a trained SOM, and the distributions of employment, social class, and education are

analysed across the resulting clusters. Most notably from the analysis, one cluster is

identified which has over twice the mean rate of unemployment, and another cluster is

identified which has over twice the mean rate of retirement, evidence that clustering of

consumption profiles can be used to highlight households who may be at risk of fuel

poverty.
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1 Introduction

Smart meters can be considered the next generation of energy meter. The European

Union (EU) advised all member governments to investigate the potential of smart me-

ters for tackling climate change, and for updating energy supply (for example, moving

towards a smart grid). In Annex 1 of Directive 2009/72/EC:

“Where roll-out of smart meters is assessed positively, at least 80% of

consumers shall be equipped with intelligent metering systems by 2020.”

In the UK this equates to the replacement of around 53 million gas and electricity

meters by the end of 2020. Smart meters mark a move from monthly, or quarterly, meter

reading to half hourly; and with this a range of intelligent functions:

• near real time information on energy use through an In-Home Display (IHD);

• easier for the consumer to shift consumption to periods of less demand (potentially

cheaper tariff);

• easier for the consumer to avoid unnecessary consumption, through caps set on

IHD;

• more accurate bills for customers, no estimations;

• direct communication with supplier, so no physical meter reads necessary;

• reduced consumption, and optimisation of supply benefits the environment.
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Figure 1: Smart meter In-Home Display (IHD) (Ovo Energy, 2017).

Some possible negative consequences of smart meters are:

• cost of installation to the supplier;

• disposing of old meters impacts on the environment;

• cost to supplier of upgrading systems and data storage, due to large increase in

magnitude of data;

• data security and privacy concerns.

1.1 CER smart meter trials

The Commission for Energy Regulation (CER) is the independent energy regulator in

Ireland. Following the EU recommendations a series of trials were performed on both

electric and gas smart meter usage. The aim was to provide statistical information on the

impact the initiatives have on overall and peak usage for residential and small business

consumers. Specifically the trials were a “collaborative energy industry-wide project

managed by the CER and actively involving energy industry participants including the

Sustainable Energy Authority of Ireland (SEAI), the Department of Communications,
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Energy and Natural Resources (DCENR), ESB Networks, Bord Gis Networks, Electric

Ireland, Bord Gis Energy and other energy suppliers” (ISSDA, 2012). The trials were not

run concurrently and the sample consumers were different for each, but each consisted

of a benchmark period for all consumers, followed by a test period with sample groups

subject to different demand side management stimuli; a control group was billed on their

normal tariff and were requested to continue using energy as normal (CER, 2011).

For the residential electricity trials:

• the benchmark period ran from 1st July 2009 to 31st December 2009;

• the test period ran from 1st January 2010 to 31st December 2010.

For the residential gas trials:

• the benchmark period ran from 1st December 2009 to 31st May 2010;

• the test period ran from 1st June 2010 to 31st May 2011.

CER have made both electric and gas datasets available, with 48 meter reads per

day for the sample consumers, and they can be accessed via the Irish Social Science Data

Archive (www.ucd.ie/issda). Recruitment for the trial was through a voluntary “opt-in”

model using a tear off slip sent to a sample of energy customers (the response rate was

30% for electricity, and 25% for gas), and a small financial incentive of 25. Participants

took part in Computer Assisted Telephone Interviewing (CATI), and the questions and

answers of the final samples are included in the provided CER data. In other smart meter

trials it had been noted that there is a significant risk of over-reputation of more highly

educated or affluent consumers. To ensure the outcome of trials were robust, respondents

who opted in were profiled to ensure they were representative of the national population;

and after recruitment, those consumers who accepted were compared to those who had

not, to confirm for representativity.

For the gas trial, consumers who were on a prepay tariff, those who were flagged

as vulnerable by the supplier, and those on short-term tenancies (less than 12 months)

were excluded from the trial, which may have an impact on identifying consumers at

risk of fuel poverty.

1.2 Fuel poverty

In the same European Commission Directive that calls for the roll-out of smart meters,

it calls on all Member States to
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“...develop national action plans or other appropriate frameworks to tackle

energy poverty” (Directives 2009/72/ EC, 2009).

The EU definition of poverty is “Persons, families and groups of persons whose

resources (material, cultural and social) are so limited as to exclude them from the

minimum acceptable way of life in the Member State to which they belong” (EEC,

1984); but as of 2012, of countries participating in European Fuel Poverty and Energy

Efficiency (EPEE), that is Belgium, France, Italy, Spain and the UK, only the UK has

an official definition of fuel poverty.

As Moore (2012) outlines, it was defined in 1991 to cover households whose fuel

expenditure on all energy services exceeds 10% of their income. At the time, this is what

the poorest 30% of households were spending on fuel. At the time it only considered

basic income, and in 1996 was updated to use full income including Household Benefit

and Income Support for Mortgage Interest. Both 1991 and 1996 definitions considered

the actual fuel prices of households, collected through a fuel consumption and tariff

survey. This was dropped in in 2001, and fuel cost was based on regional average prices,

split by payment types, and on modeled occupancy rates. In 2005, the computation

of income was refined, and fuel costs for hot water and lights were updated based on

actual occupancy. The income definition differs from those commonly used in poverty

statistics.

Since the 2012 Hills Fuel Poverty Review, fuel poverty in England is measured using

the Low Income High Costs indicator (GOV.UK, 2017), which considers a household to

be fuel poor if:

• they have required fuel costs that are above average (the national median level);

• were they to spend that amount, they would be left with a residual income below

the official poverty line.

In Ireland, the 10% threshold is used with the 2005 definition, and research by

the Economic and Social Research Institute estimated 19% of households may have

experienced fuel poverty in 2008 (Sustainable Energy Authority of Ireland, 2009).

Whichever definition is used, the literature suggests there are three main factors that

affect the level of fuel poverty:

• fuel prices

• household income

• energy efficiency of the housing stock
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1.3 Review of dissertation

This dissertation examines ways of identifying households that may be at risk of fuel

poverty, using only the load profile (shape of consumption) data that is collected from

smart meters. The structure of the dissertation is:

• a literature review covers other research done into classifying households using

load profiles, some using the CER same data;

• a data description details the data provided by CER, and how data size can be

managed;

• an examination of some sampled households’ energy use, and different ways to

visualise load profiles;

• Principal Component Analysis as a method for identifying relationships between

households and between days;

• Self-Organising Maps and k-means clustering as methods for identifying similar

households;

• an analysis of the clusters with respect to household income;

• a discussion of further work which could be done, and any alternative decisions

which could have been made.
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2 Literature Review

2.1 Beckel et al. (2012)

Beckel et al. (2012) investigate how household properties, such as its size and the

number of residents can be inferred from electricity consumption data collected by smart

meters. Their focus is on characteristics which may be interesting for personalised energy

consulting services, and suppliers looking to attract and retain customers.

“A SOM is an unsupervised learning method based on neural networks

that can be used to automatically extract clusters out of an otherwise un-

structured (and unlabeled) set of data. A SOM is an artificial neural network

that relies on unsupervised learning to group input vectors into regions of a

map. Each vector is assigned to a specific region depending on its Euclidean

(or other type of) distance to already mapped vectors. Clustering proce-

dures can then be applied to group vectors within neighboring regions into

clusters.”

The authors use the CER electricity trial data, but for just one week, and just load

factor indicators (referred to as features) rather than the raw 48 half-hourly reads per

day. They separate the features into aggregate functions of daily consumption, ratios of

aggregates, temporal properties (such as spikes) and statistical properties (such as how

a household’s consumption profiles correlate over subsequent days). Once calculated,

the values are normalised using the unit variance scaling method (that is to scale each

column to have zero mean and unit variance), so they are clustering based on pattern

of consumption rather than magnitude of consumption.

Once the households had been clustered, the authors examined for each character-

istic, how the households were distributed across clusters. For the employment status

of the chief income earner, they found that in three clusters there were 80% in employ-

ment, whilst another three were around 30% in employment. They conclude from this

that employment status is likely to be predictable from the consumption data. Also

likely to be predictable are number of bedrooms, floor area, social class and number of

residents. The implementation of a classification system is part of a later work by the

same authors, (Becker et al., 2013).

In the case of employment status, the groups that are highly likely to be in employ-

ment, are on one side of the SOM; and on this same side, the ratio of mean consumption

to maximum consumption is lowest. This suggests that those in employment have a

greater difference between the mean consumption and maximum consumption.
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2.2 Beckel et al. (2013)

Using the findings from their previous paper, Beckel et al. (2013) present a classification

system that takes the consumption features as inputs, and outputs estimated values of

the household properties. They compare the performance of a variety of classification

algorithms:

• k-Nearest Neighbour (kNN) - classification of an object is based on the most

common class of its k neighbours in the attribute space;

• Linear Discriminant Analysis (LDA) - maximizes the ratio of between-class vari-

ance to the within-class variance;

• Mahalanobis Distance - a measure of distance between a point and the mean of a

distribution;

• Support Vector Machine (SVM) - constructs a set of hyperplanes to maximise the

distance between each and any training point.

To measure the performance of classification algorithms they use accuracy (ratio of

true positives plus true negatives to the full population); and precision, “the probability

that a sample classified as class A truly belongs to class A”, and recall, “the probability

of a sample being classified as class A given that the sample belongs to class A.” Rather

than using all features for each classification, they determine the optimal subset of fea-

tures. This is a computationally complex process, so feature selection algorithms were

used, which approximate an exhaustive search. Particularly, two feature selection algo-

rithms: Sequential Forward Selection (SFS) and Parallel Sequential Forward Selection

(P-SFS) were implemented. Both algorithms iteratively increase the size of the feature

subset, and only the feature that maximises the performance metric at each iteration is

retained.

Again, the CER electricity trial data was used, this time for the second week of

January (January 11th to January 17th 2010) and four-fold cross validation was used

to separate training and testing data; k-fold cross validation splits the data in to k

folds, then uses each fold as the test data, and the other folds as training data across k

iterations.

The authors initially choose the classification algorithm with the highest accuracy

for each of the properties. For the two-class properties, the accuracy ranges from 70%

(employed or not employed) to 82% (single or not single, and house age greater than 30

or less than 30 years).
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When comparing the classification algorithms, they found that SVM provides the

highest accuracy for 8 of the 12 household properties. SVM is able to classify properties

in the presence of non-linearly separable input data, which they found was very no-

ticeable in predicting multi-class properties, where SVM clearly outperformed the other

classification algorithms. For precision and recall the classification algorithm perfor-

mance were less homogeneous, which the authors partially attribute to different number

of households available for each class and property. They find LDA outperforms the

other algorithms when the classification requires identifying households that are out-

numbered by households of other classes.

2.3 Beckel et al. (2014)

Beckel et al. (2014) build on their previous work to build a robust estimation system

for household characteristics. They use an increased list of features as inputs, no-

tably including the first 10 principal components, and transform the features to improve

normality before normalising to mean zero and unit variance. In terms of classifica-

tion algorithms, they also now include the AdaBoost classifier (shorthand for Adaptive

Boosting, this takes outputs of other algorithms, and combines them to give a weighted

sum representing a final output). To address the problems they faced with unbalanced

classes in the data (for example, age of chief income earner is split 436, 2819 and 953 for

less than 35, 35-65 and over 65 respectively), under-sampling the data during training

is used - this randomly removes samples from the overrepresented classes. Finally, for

the continuous characteristics, they used an Ordinary Least Squares regression model.

2.4 McLoughlin et al. (2015)

McLoughlin et al. (2015) investigate three widely used unsupervised clustering methods:

• k-means - partitions observations to minimize the within-cluster sum of squares

(WSS) of each cluster, with the centre of each cluster the mean of observations;

• k-medoid - similar to k-means, but uses an observation as the cluster centre;

• SOMs.

They used a Davies-Bouldin (DB) validity index (a method to indicate the similarity

within, and distance between clusters) to identify the most suitable clustering method

and number of clusters.

They begin with the current state of load profile classes (PCs, not to be confused

with Principal Components) that exist in the electricity market. In the UK there are
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two domestic PCs- Unrestricted, and Economy 7; and in Ireland there are four domestic

PCs- 24h and Night Saver, which are each split into Urban and Rural. The classes are

derived from the average for all households in the class, and are not representative of

how electricity is consumed in the home.

The authors identified a gap in the literature, as nothing had been done with clus-

tering based on the load profile for a large sample; rather it has covered clustering with

features of the load profiles, or aggregations, or on small samples. The CER electricity

trial data is used here, and clusters computed for each day in isolation, and then diur-

nal, intra daily, and seasonal patterns are characterised. As household use electricity

differently, the PC they are clustered in each day will change, but the PC they occupied

for the majority of time was taken as the overall PC.

The SOM method showed a consistently lower DB index over some sample days,

and so was chosen for applying to the full dataset; and the optimal number of clusters

was between 8 and 10, after which is when the marginal decrease in DB index became

minimal. Having trained the model, two clusters were larger than the others, accounting

for 28% and 37% of the population, and so were further broken down into 4 clusters

each; and smaller, similar clusters were grouped together, giving 10 profile classes in

total.

They found in the majority of classes that there were characteristic primary and sec-

ondary peaks which the households in each class had in common; for some the morning

was the primary peak, for others the afternoon was primary; that in most classes the

first peak of the day was earlier for weekdays than weekends; and that most classes had

an evident shift in profile across the months, that was related to sun rise and sunset

times. The authors conclude with a multi-nominal logistic regression to predict the

profile class, using household characteristics and find it is possible to classify households

and their patterns of electricity use based on only these characteristics.

2.5 Anderson et al. (2017)

Anderson et al. (2017) assessed the feasibility of using electricity load profiles, collected

from smart meters, to impute household characteristics; and whether these character-

istics could be aggregated to give small-area indicators, such as indicators found in a

census (which they criticise as a costly and frequently outdated source of population

statistics).

The authors used the CER electricity smart meter trial data, but used only a four

week period and included only Tuesday, Wednesday and Thursday (12 days in total);

this was to avoid major holidays, seasonal and temperature variations, weekends and

9



transitional days, Monday and Friday. Initially, they used a logistic regression approach

to estimate the probability that the household response person was not in paid work,

based on load profile indicators (evening consumption factor and load factor) and the

assumption that number of residents and the presence of children were known. A within

sample validation test gave a success rate of 65%. Just using load profile indicators gave

a success rate of 60%.

The authors drew on McLoughlin et al. (2015) to develop clusters with similar

load profiles. They used the weighted least squares and k-means clustering process to

give six clusters, and the cluster membership was then used in the logistic regression

together with load profile indicators - the success rate of this model was 64%. They also

investigated habitual behaviour by calculating the autocorrelation coefficient for the

24 hour (48 half-hours) lag. In general the coefficient was highest in the immediately

following periods, then a decline until a rise to the following 24 hour lag. They expected

to see less regular habits for those out of work, but adding a 24 hour and 48 hour lag

to the logistic model only gave marginal improvement, and only the 24 hour lag was

statistically significant.

The load factor indicators used were:

• Evening Consumption Factor (ECF) - mean load during 4pm to 8pm, relative to

the mean load at all other times in the day;

• Load Factor (LF) - ratio of mean load for the whole day to the maximum load for

the whole day.

2.6 Chelmis et al. (2015)

Chelmis et al. (2015) aim to identify customers who would be suitable for demand

response programs (price incentives for individuals to curtail demand when overall de-

mand is high) using Principal Component Analysis (PCA) on 15 minute consumption

data.

The authors discuss how they store the data in different representations to study

different elements of the consumption:

• To study daily pattern per building, they store a matrix for each customer of

dimension 365×96 -365 days in the sample and 96 periods.

• To study variations in demand for each day of the week, over time for each building,

and to identify similarities for each building, they store a matrix for each day of

the week (Monday-Sunday) which is (52×N)×96 52 instances of each day in the

sample, N buildings, and 96 periods.
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• To study coarse-grained similarities between buildings, and to statistically under-

stand how each buildings demand changes through the week, they store a matrix

for each day of the week with dimensions N×96.

Due to the magnitude of the data, which covers 5 years, 115 buildings, with 96 reads

per day, the authors argue that directly applying clustering algorithms here would be

inefficient and so propose first reducing the dimensionality, through PCA.

When plotting the first two primary components for the first set of matrices, for

each building they found that there was a distinct separation between weekdays and

weekends, but not between individual weekday. The buildings they looked at were on a

University campus, so this observation makes intuitive sense.

When plotting the first two primary components for the second set of matrices, for

each day of the week they found that each individual building’s consumption values

grouped closely, suggesting that energy needs remained similar across different weeks;

and, they also found that building similar in nature (such as office blocks, or classrooms)

clustered together.

Whilst the paper presents two dimensional plots of the first two primary components,

the authors found that four dimensions described 96% of the data and the implicit

patterns in it, which is a compression ratio of 4/96. With this reduced data they look

at ways to cluster the buildings, using k-means, hierarchical, and k-medoids clustering.

2.7 Harold et al. (2015)

Harold et al. (2015) examine the determinants of residential gas demand using the CER

gas trial data. Theirs is the only paper that uses the gas trial data, but they do not

look at the shape of daily gas profiles, rather the overall daily consumptions.

In their data exploration they note that a large proportion of households have zero

consumption each day, which as they are looking at over a calendar year, is attributed

to the high seasonality of gas - many households will not have any gas use other than

central heating, which is not used for a large part of the year. They also found that

a similarly large proportion had consumption in every period of the day; this could be

explained by pilot lights installed on some gas fires and central heating systems that

burn continuously, and therefore results in a small gas consumption being recorded for

every half hour period. In between these two extremes, they found that the frequency

of the number of periods (half hours) with consumption increased from one to six with

a distribution skewed to the right, then decreasing to 47 periods.

They do not include the price of gas in their analysis, as there was little variation

over the sample period, and all households are subject to the same tariff, except for
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one sub-group subject to a variable tariff in the testing phase of the trial. Income is

also not considered due to a low response rate but other socio-economic factors, namely

education and employment status, which are highly correlated to income, are considered.

The geographical location of the households in the trial is not known, so in choos-

ing where to take weather reading from, they found that Dublin has both the highest

population density in Ireland, and the highest concentration of household gas meters

in the country. The average daily temperature is about 7.5C across 539 days, and an

outdoor temperature of 15.5C is considered the critical level above which temperature

does not have an effect on heating requirements. They note a particularly cold spell

over Christmas 2010 where an outdoor temperature of -7.5C was recorded. They also

take into account cloud cover, sunshine hours, rainfall, and wind speeds.

The main model assumed daily gas consumption depends on socio-economic factors;

the number of residents; the size, type and age of the dwelling; the ownership status; the

weather, and seasons; and features of the dwelling that may increase energy efficiency. A

range of models of increasing complexity were tested, with the most complex explaining

almost 60% of the variation in daily gas consumption.

They expected that higher education levels would signal an increased awareness of

energy efficiency concerns, possibly showing lower consumption, but the model suggested

the opposite, with lower education households consuming less. This could be attributed

to the income effect, with higher education comes higher income. The model also sug-

gested that the self-employed and retired consume more than the employed, themselves

in turn consuming more than the unemployed.

Overall, weather was found to be the most influential factor in determining daily gas

consumption.

2.8 Summary

There were no specific objectives in the literature reviewed that addressed fuel poverty

but employment status was featured often. Self-Organising Maps were used in two

instances as a method for clustering households, with McLoughlin et al. (2015) finding

it more successful than other classification algorithms when working with the 48-period

load profile data. Chelmis et al. (2015) used Principal Component Analysis and several

different arrangements of their data (96-period load profiles) to identify building types,

and different behaviour on days of the week.

McLoughlin et al. (2015) and Chelmis et al. (2015) were the only two papers to

use the the load profile data without reduction; Beckel et al. (2012), their subsequent

works, and Anderson et al. (2017) reduced the load profiles to a series of features, such
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as aggregates and ratios before the main analysis.

Harold et al. (2015) was the only reviewed literature that analysed gas consumption,

as opposed to electricity consumption. They investigated the determinants of daily

consumption, disregarding the more granular period data.
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3 Data Description

This section explains the data formats provided by CER, and the processing steps taken

before analysis. Both electric and gas datasets were provided by CER for this analysis.

The format of the files was similar for the two fuel types, but detailed separately in the

following subsections for clarity.

3.1 Electricity data provision

Smart meter read data:

Six zipped files named File1.txt.zip to File6.txt.zip each containing one text file,

each with three columns corresponding to:

• Meter ID

• Five digit code:

– Day code: digits 1-3 (day 1 = 1st January 2009)

– Time code: digits 4-5 (1-48 for each 30 minutes with 1= 00:00:00 00:29:59)

• Electricity consumed during 30 minute interval (in kWh)

Pre trial residential survey - questions:

One Word file named RESIDENTIAL PRE TRIAL SURVEY containing CATI coded survey

Pre trial residential survey - answers:

One Excel and one .csv file, each named Smart meters Residential pre-trial survey

data. The first row has the question number and summary; and subsequent rows are

the answers per respondent:

• Meter ID

• one column per survey question

3.2 Gas data provision

Smart meter read data:

78 .csv files named GasDataWeek0 to GasDataWeek77, each with 3 columns correspond-

ing to:

• Meter ID

• Five digit code:
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– Day code: digits 1-3 (day 1 = 1st January 2009)

– Time code: digits 4-5 (1-48 for each 30 minutes with 1= 00:00:00 00:29:59)

• Gas consumed during 30 minute interval (in kWh)

Pre trial residential survey - questions:

One Word file named RESIDENTIAL PRE TRIAL SURVEY - GAS containing CATI coded

survey Pre trial residential survey - answers:

One Excel and one .csv file, each named: Smart meters Residential pre-trial

survey data - Gas. The first row has the question number and summary; and subse-

quent rows are the answers per respondent:

• Meter ID

• 1 column per survey question

3.3 Data size

Previous work using the electricity data, have not used the full data. The main reason

for this is computational and resource constraints. Anderson et al. (2017) looked at

only 3 days in a week over 12 week; Beckel et al. (2012) reduce the the 48 reads per day

to a set of features, over one week; and, McLoughlin et al. (2015) use the full data but

perform clustering on each day individually, then comparing the clustered data. Chelmis

et al. (2015) use a different dataset (which covers 5 years, 115 buildings and 96 reads

per day), and aim to reduce the dimensionality using PCA before clustering. Analysis

of the gas data by Harold et al. (2015) was aggregated up to daily consumption, so size

was not a problem.

This dissertation only considers residential consumers, and to avoid any bias from the

different demand side stimuli applied in the test period, it only considers the benchmark

period of the trial. Table 1 shows the number of records in the source data and the

resulting records once only residential customers in the benchmark period are considered.

A sample of the gas data can be seen in figure 2; there is one line per consumer-date-

period combination, but for some of the analysis a transposed version of the data, as in

figure 3, was used.
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Figure 2: Screen capture of gas data in SQL; there is one record per consumer-date-

period combination.

Figure 3: Screen capture of gas data in SQL after transposition; there is one record per

consumer-date combination.

The individual read data files (8 electricity files, and 78 gas files) were concatenated

using the batch command copy GasData* GasData (example given for gas only), and

then imported to SQL Server 2014 for defining the date and time variables the (five

digit code was extrapolated to give a date, day of week and time. For example, 33606

is 2nd December 2009, Wednesday, 02:30:00-02:59:59), reducing the data to relevant
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Table 1: Counts of raw data and reduced data.

Electricity Gas

No. of records 157,992,997 38,698,559

No. of consumers 6,436 1,494

No. of residential consumers 4,232 1,365

No. of records - residential consumers

in the benchmark period only 34,572,206 11,321,856

No. of individual days 720,254 235,872

consumers, and transposing the data. The SQL syntax used to define date and time is:

--split 5 digit code DT into date (day number) and time (period)

select ID

, left(DT,3) as D

, right(DT,2) as T

, Usage

into tmpReads3 from tmpReads2

--from the day number, define the date based on day 1 being 01/01/2009,

--and the day of week

select ID

, dateadd(day,cast(D as int),cast(’2008-12-31’ as date)) as ’Date’

, datename(dw,dateadd(day,cast(D as int),cast(’2008-12-31’ as date))) as ’Day’

, T

, Usage

into tmpReads5 from tmpReads3
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4 Gas load profiles

Prior research has mainly focused on consumer behaviour relating to electricity con-

sumption, with only Harold et al. (2015) covering the CER gas trial. For this reason,

and because the majority of households have gas central heating, this dissertation fo-

cuses on gas consumption. This section gives examples of some individual households’

gas load profiles, how these differ between household and across days, and explores ways

to visualise the energy consumption.

To demonstrate the how the shape of gas load profiles can differ between consumers,

three sample households were chosen, each with two residents. The consumers chosen

have the respondent to the survey being employed, unemployed and actively seeking

work, and retired.

4.1 Wednesday 10th March 2010

In this first representation, the load profiles are each taken from Wednesday 10th March

2010. The three lines in figure 4 show employed (red), unemployed (blue), and retired

(green) households.

Figure 4: Load profiles of three households on Wednesday 10th March 2010; employed

(red), retired (green), and unemployed (blue).

The employed household (red) uses no gas from midnight until period 12 (05:30-

06:001) where it ramps up to a daily peak of 9.39kWh consumed in period 14 (06:30-

1The periods are inclusive of the 59th second before the next period, in this case 05:30:00-05:59:59.

Here and in similar cases, it is referred to as 05:30-06:00 for easier comprehension.
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07:00); this then reduces over the next two periods, to zero in period 17 (08:00-08:30).

This is likely to be heating coming on by timer to heat the house before the residents

wake up, then leave the house.

Consumption is zero through the day until period 35 (17:00 -17:30, where 9.05kWh

is consumed; consumption continues of the next four periods, to zero in periods 40 to

43 (19:30 - 21:30), followed by two periods of consumption, and then zero again. This

profile could be to central heating coming on by timer before the residents come home

from work, or the residents turning it on manually; once the house is warm, the central

heating is turned off until later when the house may have started to cool.

The unemployed household (blue) has a similar profile for the morning period, with

a daily peak (7.74kWh) in period 14, but remains consuming for an extra period. So is

also likely to be heating coming on by timer to heat the house before the residents wake

up, then leave the house.

The afternoon profile is different, with earlier consumption, in periods 30 and 31

(14:30-15:30) up to 7.41kWh; and then a period of lower, more stable, consumption

in periods 34 to 37 (16:30-18:30) around 4kWh to 4.5kWh. This may suggest the at

least one resident in the household comes home in the mid-afternoon, when the heating

is put on. Another spike comes in period 42 (20:30-21:00, followed by a lower, stable

consumption period from 43 to 46.

The load profile of the retired household (green) is markedly different in that the

peaks are lower, but there are more periods with consumption across the day. This could

be due to the residents being in the house for most of the day so the house is never left

to cool down, or there is a thermostat keeping a constant temperature, rather than a

timer set for certain times.

The daily peak comes in period 7 (03:00-03:30) at with consumption of 6.05kWh.

From period 15 to 47 (07:00 to 23:30) there are only 6 periods (3 hours) without some

consumption.
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Table 2: Statistics for three sampled households on Wednesday 10th March 2010.

Statistic Employed Unemployed Retired

Mean (kWh) 1.324 1.503 2.047

Variance (kWh2) 7.364 5.159 3.152

Periods on 11 18 31

Mean when on (kWh) 5.776 4.009 3.170

Variance when on (kWh2) 6.423 5.873 2.918

Maximum (kWh) 9.389 7.741 6.052

Period of maximum 14 14 7

Time of maximum 06:30-07:00 06:30-07:00 03:00-03:30

Total consumption (kWh) 63.531 72.167 98.258

4.2 Wednesdays in March 2010

Figures 5, 6 and 7 show in turn how each household is consuming gas across the month

of March 2010, looking at just Wednesdays. From these plots it becomes evident how

consistently each household uses gas.

Example R script for sample household 1092:

ggplot(data=GasLongWeds[GasLongWeds$ID=="1092"

& GasLongWeds$Date>’2010-02-28’

& GasLongWeds$Date<’2010-04-01’ ,]

,aes(x=T,y=Usage,group=Date,colour=factor(Date)))

+geom_line(size=0.8)+ylim(0,10)
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Figure 5: Load profiles of sampled employed household on Wednesdays in March 2010.

For the employed household, figure 5, in four of the five days, the gas comes on in period

13 (06:00-06:30), and goes off by period 17 (08:00); but, in the last Wednesday of the

month, 31st March, these movements happen two periods (one hour) earlier. A possible

explanation for this would be that the central heating timer had not been updated since

the change to British Summer Time, on 28th March. After the morning period there

is less distinct of a pattern, with 3rd March having gas use through the day, and the

evening gas use not having a consistent start time. Two evening spikes are visible each

week, but with different on and off times.
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Figure 6: Load profiles of sampled unemployed household on Wednesdays in March

2010.

For the unemployed household, figure 6, the earliest gas use of the day varies from

as early as period 10 (04:30-05:00) on 17th March, to as late as period 15 (07:00-07:30)

on 3rd March; and on four of the five days there are two period of usage - where the half

hourly consumption becomes zero, or near zero, to be followed by increased consumption.

The afternoon and evening usage is also different week to week, and there is no evidence

of the change to BST as in the employed household. The different load profile here

could be due to a thermostat turning the central heating on and off to keep a constant

temperature, or could be due to the residents not having a consistent daily routine.
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Figure 7: Load profiles of sampled retired household on Wednesdays in March 2010.

The retired household, figure 7, shows three distinct load profile shapes. In the

first two weeks of the month the profiles have the same on and off times and very

similar magnitudes. In the second two weeks, the on and off times are largely the same

as the first two weeks, but with a lesser magnitude. This could be due to warmer

weather, meaning less heating needed, or due to the residents reducing the thermostat

temperature. The last Wednesday, after the move to BST does not have the spike in

period 7 (03:00-03:30), the gas is not used until period 13 (06:00-06:30). This is one

hour earlier than other weeks, potentially due to the hour change, but the consumption

through the day is notably different to the other weeks, not just offset by one hour.

4.3 Auto-correlation

Rather than just using a visual interpretation of the pattern week-to-week, the math-

ematical approach is to use autocorrelation to identify repeating patterns. Using the

same three sample households, and all Wednesdays in March, the acf function is R was

used to identify any habitual behaviour. Autocorrelation is the correlation of a time

series with itself, which if stationary is expressed:

ACF =
E[(xt − µ)(xt+k − µ)]

σ2
, (1)

where k is the lag, and x = x1, x2, ....

Anderson et al. (2017) calculated the autocorrelation coefficient as part of their
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model to determine household characteristics from electricity load profiles, and expected

lower autocorrelation for those not in paid work (derived from unpublished analysis).

The actuality was that this only produced a marginal improvement to their model, and

only at the 24 hour lag.

Figure 8 shows the autocorrelation for the employed household, figure 9 for the

unemployed household and figure 10 for the retired household. In each plot the highest

positive coefficient is in the half-hour period immediately following, then declines to a

become a negative coefficient. This may be because following a period of time of high

gas consumption, usually for heating a house, there is no need for gas consumption in

the following periods as the house hold the heat. Also, the plots in subsection 4.2 showed

distinct morning and evening periods of consumption for the employed and unemployed

households, which were followed by no consumption due to a vacant house or night time

(when residents are asleep). The retired household did not have these distinct periods,

and may be why the negative autocorrelation coefficient is less.

For all the sampled households there are other high positive coefficients at 48 periods

(24 hours, the same time of day). For the employed household this high positive coeffi-

cient is repeated at 96 periods, 144 periods - so for four consecutive Wednesdays they

displayed very habitual behaviour. For the unemployed and retired households there are

still positive coefficients at these points, but of a lesser magnitude. So for these sampled

households, it agrees with the Anderson et al. (2017) expectation that those not in paid

work will show less habitual behaviour.
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Figure 8: Auto-correlation of sample employed household on Wednesdays in March 2010.

Figure 9: Auto-correlation of sample unemployed household on Wednesdays in March

2010.
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Figure 10: Auto-correlation of sample retired household on Wednesdays in March 2010.
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4.4 Visualisation

This section explores some other ways to visualise the data, countering some of the

weaknesses of plots such as figures 5, 6 and 7. With those plots it is difficult to display

more than the 5 days, as lines begin to overlap and stack up on top of each other; there

is also a difficulty in identifying differences in colour when the number of lines increases.

4.4.1 3D surface plots

The first type of plot to consider is a 3D surface over the x− y plane. It is created in R

using the persp function, where the x-axis displays the date (in days since 1900-01-01

format) and the y-axis displays the 48 periods. The figures 12, 11 and 13, are each

showing all Wednesdays in the benchmark period - so covering 1st December 2009 to

31st May 2010.

The R code for this is:

dat2=GasLongWeds[GasLongWeds$ID==1828,c(1:2,4:5)]

new.dates <- with(dat2, sort(unique(Date)))

new.times <- with(dat2, sort(unique(as.numeric(T))))

new.values <- with(dat2, matrix(Usage, nrow = 26, ncol = 48

, byrow = TRUE))

new.col=drapecol(new.values, col = femmecol(100), NAcol = "white"

, lim = NULL)

persp(new.dates,new.times, new.values, ticktype = "detailed"

, r = 5,theta = 80, phi=20, scale = FALSE,col=new.col)

In each of the plots, towards the top of the plot, there are days where the gas is in

use through the majority day time periods, and a generally different pattern to the rest

of the days; this is due to the Christmas and New Year period, were people will alter

their routine due to different working hours (both affecting those working and those

using services), and potentially having more people in the house. This is particularly

evident for the retired household, who usually have a very similar pattern of use week-to-

week, but over at least two Wednesdays in December and January have gas use almost

constant through the day.
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Figure 11: 3D plot of sampled retired household’s consumption on Wednesdays.

The retired household shows the effect that warmer weather can have on gas con-

sumption. Up to the end of March there is a period overnight where it is assumed the

heating comes on to warm the house. As seen in figure 7 this pattern was different in the

last week in March, and this is confirmed in figure 11 to be a change for the rest of the

sample period. The other change for the retired household is the evening consumption

changes to be a shorter period of consumption but at a higher rate.
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Figure 12: 3D plot of sampled employed household’s consumption on Wednesdays.

The employed household, figure 12, continues with the earlier morning consumption

(seen in figure 5), which was previously attributed to the central heating timer not

being changed following the BST hour change; but as this behaviour continues, it may

instead be based on temperature, or a change in routine. The afternoon and evening

consumption tails off towards the end of the sample, with two spikes of consumption

reducing to one, and eventually none (though as this is the end of the sample, it could

be an anomaly, such as the house is vacant).
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Figure 13: 3D plot of sampled unemployed household’s consumption on Wednesdays.

The unemployed household in figure 13 probably shows the most obvious effect of

temperature and the change from Winter to Spring, with morning gas consumption

ceasing around mid-April, and afternoon and evening consumption reducing from a

similar time.

4.4.2 2D overhead plots

The 3D plot is still limited in the number of days it can display, with a loss of clarity

towards the back of the plot. To overcome this figures 14, 15 and 16 look directly from

above. This is using the R package plot3D and the function image2D.

library(plot3D)

tmp.matr=GasWide[GasWide$ID==1828,]

tmp.matr=tmp.matr[order(tmp.matr$Date),]
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tmp.matr=tmp.matr[,4:51]

tmp.matr=data.matrix(tmp.matr, rownames.force = NA)

image2D(tmp.matr)

Figure 14: 2D plot of sampled employed household’s consumption on all days.
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Figure 15: 2D plot of sampled retired household’s consumption on all days.

Figure 16: 2D plot of sampled unemployed household’s consumption on all days.

In figures 14, 15 and 16 the x-axis displays all days (not limited to just Wednesdays)

in the benchmark period, and the y-axis displays the 48 periods. By including the extra
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days of the week, there is no evident change in overall pattern for each of the households.

They are still dominated by certain periods of consumption in the morning and evening,

but other insights become apparent.

• Vacant days are visible for the retired household and for the employed household;

• Gas consumption into the early hours of the morning for the employed household

and unemployed household;

• A period of months with very consistent on and off times for the retired household.
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5 Principal Component Analysis

This sections looks at using Principal Component Analysis (PCA) to better understand

the the gas data. The data has 48 variables, and as seen in subsection 4.3, there is some

correlation between them. Chelmis et al. (2015) use PCA to reduce the dimensionality

of the electricity data they are working with, and Beckel et al. (2014) use PCA to help

describe different behaviour between households.

PCA can be used to find the important relationships between variables, so that all

variables are not needed to understand the data; the aim is to capture a sufficient amount

of information with as few variables as possible. It does this reduction by identifying the

direction along which variations in the data is maximal - each of these directional linear

combinations is a principal component. The first principal component shows the largest

variation; the second principal component is the largest variation that is uncorrelated

to the first, and so on. The outcome is a set of values of linearly uncorrelated variables,

instead of the original possibly correlated variables. PCA is a benefit for computational

resources, not needing to hold and process as much data; and, for interpretation and

visualisation, it is easier for people to comprehend and understand lower dimensional

data.

The ith principal component, Zi is defined as

Zi = Φi1X1 + Φi2X2 + · · ·+ ΦiKXK , (2)

where ΦiK is the loading vector, or eigenvector, of the ith principal component, and

normalised variable XK . To calculate the principal components the variables need to

be normalised. With the gas load profiles, periods are all measured in kWh, but there

will be certain periods which have higher variance, and this will cause a dependence of

principal components on these variables. In other cases the units for each variable will

be different, and so normalising becomes more important.

5.1 Relationship between households

In this subsection the focus is to investigate the variance between households on one day.

The fist step is to organise the sample into a data matrix, of N rows and K columns,

and in this instance the matrix is 1296×48. This is all 1296 households with 48 periods

each for Wednesday 10th March 2010 (the same day used in subsection 4.1), similar to

the third matrix type that Chelmis et al. (2015) used; they specified a matrix like this

for each day of their sample, but here it is just one matrix for one day.

The prcomp function is used in R, and by specifying center=TRUE and scale.=TRUE,
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the variables are centred to zero mean, and scaled to unit variance. The scaled vector

x′ satisfies

x′ =
x− x
σ

, (3)

where x is the original vector of variables, x is the mean of it, and σ is the standard

deviation of it.

The principal component loadings for ΦiK for i = 1, . . . , 6 and K = 8, . . . , 21 are

shown in figure 17. By multiplying the normalised variables by the loadings, the result

can be plotted and the direction of the principal components can be seen, see figure 18

for principal components one and two (PC1 and PC2). PCA is often used to identify

groups of observations, such as the employment status of the household, but in this case

just PC1 and PC2 alone do not provide enough information to do so; also labeled in the

figure is the percentage of variance explained by each principal component, and together

they explain 20.2%.

Figure 17: Principal component loadings for ΦiK for i = 1, . . . , 6 and K = 8, . . . , 21.

Screen shot from R - all households on one day.
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Figure 18: Principal components one and two, coloured by household employment status

- all households on one day.

As stated previously, the first principal component explains the most variation in the

data, with each subsequent principal component explaining less. Mardia et al. (1979,

pp224-225) give some “rules of thumb” for choosing a suitable number of principal

components, and what level of explained variance is appropriate:

• exclude principal components whose eigenvalues are less than the mean - eigenval-

ues measure the variability retained by each principal component

– suggests first 15 principal components to keep

• examine a “scree graph” which shows the variance explained by each principal

component, which often shows a distinct cut-off between large and small contri-

butions

– figure 19 shows the proportion of variance explained by each principal com-

ponent

– not particularly clear, could be at 5 principal components

• just enough principal components to explain 90% of the total variance
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– figure 20 shows the cumulative proportion of variance explained each time an

additional principal component is considered

– it takes 27 principal components to explain 90% of the total variance, reducing

dimensionality by 21

Figure 19: Proportion of variance explained by principal components - all households

on one day.

Figure 20: Cumulative proportion of variance explained by principal components - all

households on one day.
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The rules of thumb suggest to keep 5, 15 and 21 principal components, which explain

40.6%, 72.6% and 89.7% of the variance respectively, and the final choice comes down

to the motivation for using PCA. Beckel et al. (2014) selected the first 10 principal

components to help classify households when looking at electricity profiles. They do not

state why the first 10 principal components were chosen, or to what “rule of thumb” they

worked to, but they were held as variables along with other features they had picked out

from the electricity profile data, so they may have been more concerned about reducing

dimensionality than getting a more complete explanation of variance. Chelmis et al.

(2015) were explicitly concerned about reducing dimensionality, it happened that the

variation in their data could be 96% explained by four principal components.

In this dissertation the motivation is to get a more complete explanation of variance,

and if 90% was achievable with a greater reduction in dimensionality then it would have

been explored further, with clustering methods applied to the principal components.

5.2 Individual households

The data is organised differently to the previous subsection, in that rather than each

matrix being every household on one day, it is one household over many days; Chelmis et

al. (2015) also considered this data arrangement to study the daily pattern per campus

building. It is outside the objective of this dissertation, but by structuring the data this

way, the principal components explain variances in each households individual behavior.

External factors could be brought in, such as temperature or energy price bands, to see

if households change their behaviour based on these external factors.

For this case study, the households to be analysed are the same three as in section

4; the period considered here is every day between Sunday 10th January and Saturday

27th March 2010, inclusive; and the grouping is on weekday and weekday. The period

begins after the Christmas holiday season, and ends before the BST hour change. This

means that each matrix is 77×48, representing 77 days of 48 periods, and as above each

variable is normalised before the principal components are calculated.

The left-hand side of figures 21, 22 and 23 show the first two principal components,

and the weekday groupings. The axis labels show the proportion of variance explained by

PC1 and PC2; for the retired household, together they explain 55.4%, compared to 32.0%

and 23.6% for the employed and unemployed households respectively. Complimenting

this, on the right-hand side of the figures is a cumulative scree plot, and the retired

household meets the Mardia et al. (1979) “rule of thumb” to explain 90% of the total

variance with 10 principal components, while the employed and unemployed households

take 19 and 21 principal components respectively. In section 4, the retired household
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was seen to be the most consistent consumer, with regular periods and magnitudes of

consumption, and the unemployed household the least consistent.

Figure 21: Principal component analysis - one employed household across many days.

Principal components one and two, Cumulative proportion of

coloured by day type variance explained
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Figure 22: Principal component analysis - one unemployed household across many days.

Principal components one and two, Cumulative proportion of

coloured by day type variance explained

Figure 23: Principal component analysis - one retired household across many days.

Principal components one and two, Cumulative proportion of

coloured by day type variance explained

In terms of grouping the weekdays and weekends, it is the unemployed household
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which appears to have the most distinct clustering, with a group of weekdays with no

weekends on the left-hand side of the plot. The employed household is less distinct,

with the majority of weekdays grouped together, and days not in this group tending to

be weekends; which could be due to a more stringent routine in the week due to work

commitments. The retired household has two linear groups, but it is not weekday and

weekend which is causing these groups.

If pursuing this, a revised method for centring and scaling of variables would have

to be investigated. For some households there is the same period of zero consumption

on every day of the sample, and so scaling to unit variance is not possible. In the case

of the sample households there was a trace of consumption in almost every period in

the sample, so unit variance could be calculated; but it may be acting in the opposite

way as intended, giving these periods of essentially zero consumption equal weighting

to periods of actual consumption.
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6 Self Organising Maps

As seen with PCA, it can be difficult to interpret the 48 variables present in the gas

data, so this chapter explore the SOM method, as used by Mcloughlin et al. (2015)

and Beckelet al. (2012). SOMs, often known as Kohonen Self Organising Maps are

useful for visualising relationships between high-dimensional input data. They were

originally introduced by Kohonen (2001), and provide a classification of input data

and maps of attribute space. From a data science standpoint, they are an attractive

proposition due to relatively intuitive computation and easily interpretable results - that

is the computation is based on Euclidean distances, and the closer observations are in

the attribute space, the more similar they are. A SOM is a two-dimensional array of

neurons, and each neuron has a vector of length p, where p is the number of variables

(in this case p = 48). The neurons are initially assigned vectors of random variables,

constrained by the attribute space. neurons are arranged in a grid of D neurons with

each neuron having a non-zero number of neighbouring neurons, usually they are square

or hexagonal. Figure 24 shows an example of a 4×4 grid of hexagonal neurons. The

neurons are initially assigned vectors of random variables, constrained by the attribute

space. There are versions of SOMs in a 3D space, where the edges are joined, but these

are difficult to visualise on paper, and so will not be explored further, (Schmidt et al.

2011).

Figure 24: Example of a 4×4 SOM grid.
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The input vectors can be represented as x = {xi : i = 1, ..., p}, and the neuron

vectors represented as mj = {mji : j = 1, ..., N ; i = 1, ..., p}. To train the SOM, each

vector from the input data is presented in turn to the grid of neurons and a discriminant

function is calculated as the squared Euclidean distance between the input vector x and

the vector mj for each neuron j, where the smallest distance is the winning neuron

dj(x) =

p∑
i=1

(xi −mji)
2, (4)

or can be written

dj(x) = ‖x−mj‖ , (5)

and the winning neuron c satisfies

‖x−mc‖ = min
j
{‖x−mj‖}. (6)

The winning neuron learns from the input vector, but also the neurons surrounding

the winning neuron learn from the input vector - within the brain, there is lateral

interaction between neurons, there is a topological neighbourhood that decays with

distance. In the SOM there is a neighbourhood function written in terms of the Gaussian

function

hcj(t) = α(t)× exp

(
−
R2

cj(t)

2σ2(t)

)
, (7)

where where t = 0, 1, 2, ... is an integer, the discrete-time coordinate; Rcj is the lateral

distance between the best matching neuron c and neuron j; α(t) is a learning rate factor

where 0 < α(t) < 1; and, the parameter σ(t) defines the width of the kernel - both α(t)

and σ(t) are some monotonically decreasing functions of time.

The learning from the input vector is shown by

mj(t+ 1) = mj(t) + hcj(t)[x(t)−mj(t)], (8)

This is showing that the new neuron vector is equal to the old neuron vector, plus a

fraction of the difference between the old neuron vector and the input vector. At the

edge of the neighbourhood, the fraction is less, so these neurons are less affected by the

input vector.

Brunsdon and Singleton (2015, pp158-159) use the analogy of shooting data at the

grid; the data hits the best matching neuron, and the deformation of the grid from the

‘impact’ causes nearby neurons to adjust their values to be more similar to the best

matching neuron. The neurons are randomly intialised, but as data hits the grid, areas

43



of deformation emerge. Continuing the analogy, as the training process continues, the

speed of the data hitting the grid decreases, and the size of the deformation decreases

too.

6.1 Defining the map

To use the SOM algorithm in R, the kohonen package is necessary. The first step is

to define the dimensions of the SOM grid, and the shape of the neurons. There is no

specific rule to follow in choosing the number of neurons - to achieve a fine distinction

between categories, a larger SOM is needed. McLoughin et al. (2014) used between 8

and 10 neurons for one day of data; Beckel et al. (2012) did not specify, but used a

much larger number of neurons, and then cluster the neurons; Brunsdon and Singleton

(2015, p162) used 16,000 neurons for 211,000 input vectors on research for US Census

Bureau (13.19 vectors per neuron).

To train the SOM, the data used has the following features:

• Tuesdays, Wednesdays and Thursdays

– As in Anderson et al. (2017), this is to avoid the different consumption

behaviour of weekends and transitional days, Monday and Friday.

• From Tuesday 12th January 2010

– As seen in subsection 4.4, consumption behaviour over the Christmas and

New Year holiday period was different to usual.

• To Thursday 25th March 2010

– As seen in subsection 4.4, consumption behaviour was affected by the BST

hour change, and then reduced through April.

• Excludes the lowest and greatest 5% of mean daily consumption

– Training a SOM with a smaller data set resulted in one neuron having an

imbalance of associated vectors compared to other neurons;

– This neuron had a mean load of 0.0370, which is close to no gas consumption

in the day, and are likely vacant on the sample days;

– Figure 25 shows there is a spike at 0 to 0.05 kWh mean load in that sample

data, and overall it is a gamma distribution.
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Figure 25: Histogram showing the mean hourly gas consumption per household for

Wednesdays in March.

R code that defines the training data:

##Select subset, mid Jan to hour change in March, Tuesday, Wednesday

##and Thursday

data_train_tmp = GasWideSurv[(GasWideSurv$Day=="Tuesday"

|GasWideSurv$Day=="Wednesday"

|GasWideSurv$Day=="Thursday")

& GasWideSurv$Date>="2010-01-12"

& GasWideSurv$Date<="2010-03-25",]

##Calculate and exclude 5% and 95%

data_train_tmp$ML= rowMeans(subset(data_train_tmp,select=c(4:51))

,na.rm=TRUE)

ggplot(data=data_train_tmp, aes(data_train_tmp$ML))

+ geom_histogram(binwidth=0.1)

+ labs(x = "Mean load (kWh)")

q05=quantile(data_train_tmp$ML, probs = c(0.05))
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q95=quantile(data_train_tmp$ML, probs = c(0.95))

data_train_tmp=data_train_tmp[data_train_tmp$ML>q05 & data_train_tmp$ML<q95,]

ggplot(data=data_train_tmp, aes(data_train_tmp$ML)) + geom_histogram(binwidth=0.1) + labs(x = "Mean load (kWh)")

data_train=as.matrix(data_train_tmp[,4:51])

This results in 38,490 input vectors of 48 periods to train the SOM. Using a similar

ratio as Brunsdon and Singleton (2017) gives a 50×57 of 2,850 neurons. The R code to

define the map dimensions:

## Specify grid dimensions

som_grid = somgrid(xdim = 50, ydim=57, topo="hexagonal")

To train the model, the parameters to specify are (The R Project for Statistical

Computing, 2017):

• rlim - the run length, specifies how many times the input data will be presented

to the SOM;

• alpha - the learning rate factor, a range is specified as the rate monotonically

decreases over the run length;

• radius - the size of the neighbourhood, a range is specified, decreasing to one (the

best matching neuron only).

Similarly to setting the size of the grid, there is no specific rule to choose the run

length other than too small a run length and the SOM may not be very well trained.

Kohonen (2001, p211) gives a “rule of thumb” that for “good statistical accuracy the

number of steps must be at least 500 times the number of network units (neurons)”

and often use up to 100,000 steps - a step in this sense is one input vector presented to

the SOM, not the full input data. As computing power has changed since this “rule of

thumb”, to be at least 500 times the number of neurons for the chosen grid size, would

be at least 1,425,000 steps. Given the number of input vectors, the run length should

be at least 37 (that is to present all input vectors 37 times).

Running the SOM with rlen = 37 took approximately 5 minutes (in R Studio,

2.4GHz Intel i7-5500 CPU, 7.88GB RAM). As more iterations lead to a better trained

SOM, increase ten-fold to rlen = 370 took 60 minutes. This still was not a signifi-

cant pressure on computational power, so it was run with rlen = 740 which took 170

minutes.
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The default radius is set at two-thirds of the grid reducing to one. Kononen (2001,

p112) states that if too small a radius is chosen, “mosaic-like parcellations of the map

are seen”, which can be avoided by starting with a large radius and reducing over time.

As such, the SOM runs with the default radius.

Kononen (2001, p112) suggests the learning rate starts at about 0.9, decreasing to

about 0.02, and that “an accurate time function is not important”, but Brunsdon and

Singleton (2017, p163) use the kohenen default of 0.05 and 0.01. Given the significant

difference between the two parameters, the SOM was run for both sets of parameters,

and the trained maps compared.

The R code that defines the training process of the SOM; alpha was changed to

c(0.05,0.01) for the second training process:

set.seed(25817)

# Train the SOM

som_model3 = som(scale(data_train, center=TRUE, scale=TRUE)),

grid=som_grid,

rlen=740,

alpha=c(0.9,0.02),

keep.data = TRUE)

There are several plots to consider when considering the success of a trained SOM

(The R Project for Statistical Computing, 2017):

• changes shows the mean distance to the nearest neuron for each iteration

– Figures 26 and 27 show this plot for the two versions of the map.

• counts shows the number of input vectors assigned to each neuron

– Figures 28 and 29 show this plot for the two versions of the map;

– Figures 30 and 31 are histograms showing the number of input vectors per

neuron for the two versions of the map.

• quality shows the similarity of input vectors to each neuron

– Figures 32 and 33 show this plot for the two versions of the map.

• dist.neighbours shows the similarity between neurons, or the distance to each

neighbour, and is often referred to as a ‘u-matrix’. If the neighbour distance is low

then that is a similar group of neurons, and any areas of dissimilarity are often

what form cluster boundaries.
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– Figures 34 and 35 show this plot for the two versions of the map.

Figure 26: SOM training process with 740 iterations, alpha=c(0.9,0.02).

Figure 27: SOM training process with 740 iterations, alpha=c(0.05,0.01).

Plotting changes shows the mean distance to the nearest neuron for each iteration,

and for true confidence that the map is completed training, convergence would be ex-

pected, as each new iteration causes minimal changes to the shape of the map. In these

cases seen in figures 26 and 27 there is not much evidence of convergence. To over come

this more iterations can be presented, but on doubling the number for the first model

the processing time became impractical. There is nothing between these two figures

that would suggest one is a better trained model than the other.
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Figure 28: SOM neuron allocation, alpha=c(0.9,0.02).

Figure 29: SOM neuron allocation, alpha=c(0.05,0.01).
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Figure 30: Histogram showing SOM unit allocation, alpha=c(0.9,0.02).

Figure 31: Histogram showing SOM unit allocation, alpha=c(0.05,0.01).

Plotting counts shows the number of input vectors assigned to each neuron, and

less variance is preferred. The histograms in figures 30 and 31 show similar gamma

distributions, but figure 30 has a longer tail. This model has more neurons with high

numbers of input vectors associated, and these can be seen as the white spots in figure

28. Figure 31 shows that this model has more ‘empty’ neurons - neurons with zero input

vectors associated, and are seen in the allocations plots as grey spots. These neurons

have still been subject to training and have been updated by being in the neighbourhood

of the neurons around it, but suggest a smaller map might be suitable; whilst having

too many over-allocated neurons suggests a larger map might be suitable.
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Figure 32: SOM neuron quality, alpha=c(0.9,0.02).

Figure 33: SOM neuron quality, alpha=c(0.05,0.01).

Plotting quality shows the distance of input vectors to each neuron; the smaller

the distances, the better represented the input vectors are. The colour scale runs from

red for the smallest distances through yellow to white for the largest differences. Figure

32 and 33 are outputs from the kohonen package, but a limitation with this package is

the scale given to each heat map is not programmable. Figure 32 looks to have a more

consistent quality over the map, but this is caused by one neuron which is very low

quality (high distance) compared to the other neurons. Figure 33 actually has better

quality neurons and less variation, but there appears to be more variation based on the
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plot due to a lower maximum distance.

Figure 34: SOM neighbour distances, alpha=c(0.9,0.02).

Figure 35: SOM neighbour distances, alpha=c(0.05,0.01).

Plotting dist.neighbours shows the similarity between neurons, or the distance to

each neighbour, and is often referred to as a ‘u-matrix’. If the neighbour distance is low

then that is a similar group of neurons, and any areas of dissimilarity are often what

form cluster boundaries. Figures 34 and 35 show that the two models have different

areas of dissimilarity, and so would likely cluster differently. That SOMs are presented

in 2D and as a fixed grid is a positive when trying to visually interpret the results, but

this can be deceiving if there are areas of the map where neurons are less similar to their
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neighbours, so for this reason, less variation is preferred; figure 35 has the less variation

in neighbour distance of the two.

The results from the SOM neuron quality, and neighbour distance plots suggest that

the model run with the default parameters for alpha, alpha=c(0.05,0.01), is the better

choice and will be carried forward into the next sections. If more resources were available

then making adjustments to the number of iterations and to the map size could improve

the model, with potentially a convergence in training and fewer empty neurons.

6.2 Clustering the SOM

Having selected the most suitable map, this subsection looks at clustering the neurons.

The data has been reduced from 38,490 input vectors to 2,850 neurons, each with its

own unique load profile. k-means clustering is the chosen clustering method, for it’s

familiarity and ease of understanding, and as used in much of the literature. To select

k, the Davies-Bouldin (DB) index is used, as it was by McLoughlin et al. (2015).

The DB index was introduced by Davies and Bouldin (1979) as a method to indicate

the similarity of clusters, and can be used to infer the appropriateness of partitions of

the data. It measures the ratio of the within-cluster scatter S of two clusters i and j, to

the seperation between the two clusters M . These two measures are Euclidean distance

functions, as used in k-means.

Rij =
Si + Sj
Mij

, (9)

which is used to define Di

Di ≡ max
j 6=i

Rij , (10)

and this is used to calculate the DB index for N clusters

DB ≡ 1

N

N∑
i=1

Di. (11)

The R code to calculate the DB index for 2 to 30 clusters, using the clusterSim

package and index.DB function:

#Davies-Bouldin cluster separation measure

library(clusterSim)

##the load profiles for each neuron

som_codes=do.call(rbind, lapply(som_model3b$codes, data.frame

, stringsAsFactors=FALSE))
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##Variables to store results

v1=NULL

v2=NULL

for (i in 2:30){

nc=i

##k means

SOMClusters=kmeans(x=(som_codes),

centers =nc,nstart=1000,iter.max = 10000)

##store cluster number

v1=rbind(v1,nc)

##store the DB index for each cluster number

v2=rbind(v2,index.DB(som_codes,SOMClusters$cluster)$DB)

print(index.DB(som_codes,SOMClusters$cluster)$DB)

}

##Combine results and plot

DB.index=data.frame(cbind(v1,v2))

ggplot(data=DB.index,aes(x=X1,y=X2))+geom_line()

+xlab("Number of clusters")+ylab("DB index")

Figure 36: DB index for 2 to 30 clusters.
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The aim is to choose the number of clusters with the minimum intra-cluster distance,

so the smaller the DB index the better (Saitta et al., 2007). The value of DB would

continue to decrease until each neuron was its own cluster, so simply choosing the

minimum DB is not applicable. In figure 36 there is only marginal change going from

16 clusters to 30 clusters, so k=16 was chosen.

The clusters are presented on the map in figure 37, and the composition of the

clusters in terms of neurons and input vectors in table 3. The k-means clustering is

performed in a 48-dimensional space, whilst the map is presented in a 2D format, which

is why there is apparent overlap between the different clusters. The map in itself is

not particularly interesting for understanding the clusters, but the load profile shapes

of clusters are, and are introduced in the next section.

Figure 37: SOM with 16 clusters.
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Table 3: Counts of neurons and input vectors per cluster.

Cluster No. of neurons No. of input vectors % of neurons % of input vectors

1 242 3,850 8.6 10.0

2 140 2,094 5.0 5.4

3 204 2,597 7.2 6.7

4 270 3,576 9.6 9.3

5 51 743 1.8 1.9

6 45 460 1.6 1.2

7 507 7,538 18.0 19.6

8 41 388 1.5 1.0

9 78 837 2.8 2.2

10 91 906 3.2 2.4

11 210 2,917 7.4 7.6

12 175 2,446 6.2 6.4

13 200 2,770 7.1 7.2

14 57 454 2.0 1.2

15 353 4,952 12.5 12.9

16 155 1,962 5.5 5.1
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6.3 Cluster load profiles

To better understand the shape of the load profiles of each cluster, the mean consumption

for each period was calculated for each cluster, and plotted on top of the load profiles

associated with that cluster. The plots can be seen in figure 38, and all are to the same

scale.

While initially the clusters look similar to each other, the majority have distinct

features:

Two peaks:

• Cluster 1 has a morning peak smaller than evening peak;

• Cluster 2 has a morning peak greater than evening peak;

• Cluster 4 has a morning peak slightly smaller than evening peak;

• Cluster 7 has similar morning and evening peaks, of lesser magnitude than other

clusters;

• Cluster 16 has similar morning and evening peaks, of a greater magnitude than

other clusters.

Multiple PM periods of consumption:

• Cluster 3 has a second increase in consumption up to period 47 (23:00-23:00);

• Cluster 11 has a peak at around period 26 (12:30-13:00) and at period 36 (17:30-

18:00);

• Cluster 12 has a high plateau periods 34 to 39 (16:30-19:30) following a peak;

• Cluster 13 has a peak at around period 30 (14:30-15:00) and at period 36 (17:30-

18:00);

• Cluster 15 has a steady rise from periods 12 to 23, a steady dip and rise to second

peak at period 36 (17:30-18:00).

The above 10 clusters are those with the clearest and most interpretable shapes, and

they also are the clusters which each contain over 5% of the neurons and over 5% of the

input vectors. The remaining six clusters are less distinguishable, and may have been

better treated as fewer clusters.
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• Clusters 6, 8 and 14 all have the highest peak in the earlier morning, two morning

peaks, and a shallow rise to an evening peak;

• Cluster 10 is similar in shape, but with a morning peak around period 5 (02:00-

02:30) which is distinct from all other clusters;

• Cluster 5 is similar, but does not have a secondary morning peak; it is also similar

to Cluster 2 but with an earlier start;

• Cluster 9 has consumption across the whole day and night, never less than 1kWh,

with less severe spikes.
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Figure 38: Mean load profiles for each cluster, plotted over actual load profiles associated

with each cluster.
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Figure 38: Mean load profiles for each cluster, plotted over actual load profiles associated

with each cluster.
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7 Cluster characteristics

One of the key factors driving fuel poverty is household income level, and the CER

survey asked this question:

QUESTION 4021

Can you state which of the following broad categories best represents the

yearly household income BEFORE TAX?

1 Less than 15,000 Euros

2 15,000 to 30,000 Euros

3 30,000 to 50,000 Euros

4 50,000 to 75,000 Euros

5 75,000 or more Euros

6 Refused

Unfortunately for the purpose of this dissertation, 73.9% of households refused to

give an answer. Harold et al.(2015) used employment status and education level as

proxies for household income, and so this section examines the clusters to see if any

show a distinctly different compositions to the overall sample, for employment status,

education, but with the addition of social class too.

7.1 Employment status

The CER survey had the following question about employment status:

QUESTION 310

What is the employment status of the chief income earner in your household,

is he/she

1 An employee

2 Self-employed (with employees)

3 Self-employed (with no employees)

4 Unemployed (actively seeking work)

5 Unemployed (not actively seeking work)

6 Retired

7 Carer: Looking after relative family

For simplicity the following analysis groups answers 1, 2, and 3 together as Employed;

4, 5, and 7 as Unemployed; and 6 as Retired. The distribution for the sample across all

clusters is as in table 4, and is shown in figure 39 across all clusters.
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Table 4: Employment status distribution across all input vectors.

Category Percentage of sample

Employed 71.0

Unemployed 8.6

Retired 20.5

Figure 39: Composition of employment status across clusters.

Perhaps with more clarity, 40 shows the percentage of the sample that is unemployed

at 8.6%, against the percentage for each cluster; and for cluster 9 it is 17.4% unemployed,

over twice the rate. Seen in figure 38, cluster 9 has no severe peaks and quite constant

consumption through the day compared to other clusters; this ties to the Beckel et

al. (2012) observation of electricity profiles, that those in employment have a greater

difference between the mean consumption and maximum consumption than those in

unemployment. Also of note are clusters 6 and 8 which have less than half of the sample

percentage at 1.7% and 2.3%, respectively.

Figure 41 is a similar plot but showing the percentage of retired households. Cluster

16 has over twice the sample percentage, at 46.1% against 20.5%; but also of note is

cluster 15 which whilst not quite as significant at 40.5% retired, this cluster is the second

largest, accounting for 12.9% of input vectors.
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Figure 40: Percentage of each cluster which is unemployed, ordered by percentage; and

the percentage of the sample shown by an intersecting line.

Figure 41: Percentage of each cluster which is retired, ordered by percentage; and the

percentage of the sample shown by an intersecting line.

7.2 Social class

Social class is a way of grouping households, and is based on occupation. In the CER

survey the respondent gives their occupation and the interviewer assigns a social class.

QUESTION 400
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IF [ Q310 , 1 , 2 , 3 ]

What is the occupation of the chief income earner in your household?

QUESTION 401

SOCIAL CLASS

Interviewer, Respondent said that occupation of chief income earner was....

Please code

1 AB

2 C1

3 C2

4 DE

5 F [RECORD ALL FARMERS]

6 Refused

There is no look-up provided with the data and manifest which says which occupa-

tions are assigned to which social class (other than that all farmers are assigned class

F, and those not in employment are assigned to class E). A break down of the classes

used in Ireland is, briefly:

• A - professionals, senior managers, top-level civil servants;

• B - middle management, principal officers in civil service, small business owners;

• C1 - junior management, owners of small establishments, all other non-manual

positions;

• C2 - skilled manual workers, manual workers with responsibility for others;

• D - semi-skilled and unskilled workers, apprentices and trainees;

• E - entirely dependent on the state, long term;

• F - unique to Ireland, farmers and their dependents.

A common way to group these classes is as middle class - A, B, and C1; and as

working class - C2, D, and E. As social class E is directly linked to employment status,

that is it includes retired and unemployed households, in this instance it will be grouped

separately to C2 and D. The distribution for the sample across all clusters is as in table

5, and is shown in figure 42 across all clusters.
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Table 5: Social class distribution across all input vectors.

Category Percentage of sample

ABC1 54.8

C2D 19.6

E 23.9

F 0.6

Refused 1.1

Figure 42: Composition of social class across clusters.

Figure 43 shows the percentage of the sample that is in social class C2 or D, so called

‘working class’, at 19.6%, against the percentage for each cluster. There is variation

between clusters, but not as distinct as with unemployment and retired households.

Regarding social class E, when analysing the unemployment and retired rates of the

clusters in the previous subsection, clusters with a higher rate of unemployment tended

to have a lower rate of retirement, so it might be expected that these cancel each other

out. Figure 44 shows that this is not the case, and the clusters on the left-most of figure

41 are also left-most here.
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Figure 43: Percentage of each cluster which is in either social classes C2 or D, ordered

by percentage; and the percentage of the sample shown by an intersecting line.

Figure 44: Percentage of each cluster which is in social class E, ordered by percentage;

and the percentage of the sample shown by an intersecting line.

7.3 Education

Education is the final indicator considered as a proxy for household income. In Ireland,

the Junior Certificate (which replaced the Intermediate Certificate in 1992) is completed

by children ages 14 to 16, after three years of secondary school; and the Leaving Cer-

tificate completed by ages 17 to 19.
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Table 6: Education level distribution across all input vectors.

Category Percentage of sample

Intermediate Cert Level or less 21.5

Leaving Cert Level 23.1

Third Level 50.5

Refused 4.8

QUESTION 5418

Moving on to education, which of the following best describes the level of

education of the chief income earner. Intermediate

1 No formal education

2 Primary

3 Secondary to Intermediate Cert Junior Cert level

4 Secondary to Leaving Cert level

5 Third level

6 Refused

As of 2000, the minimum leaving age is 16 years old, and under-18s must complete

the Junior Certificate. For this reason, ‘No formal education’, ‘Primary’ and ‘Secondary

to Intermediate Cert Junior Cert level’ were grouped together to incorporate all those

who left education at the minimum age. The percentage of the sample in each group is

in table 6, and of the clusters in figure 45.
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Figure 45: Composition of education level across clusters.

Looking at just the ‘Intermediate Certificate Level or less’ group in figure 46, the

two left-most clusters (those with the highest percentage), clusters 16 and 15, are also

the left-most clusters in the retirement plot, figure 41 and the E social class plot, figure

44.

There is a higher percentage of respondents that have refused to give an education

level than those who refused to give occupation (and hence get assigned a social class).

There is a possibility that this is sensitive information to the respondent, especially if

they have a lower level of education, so there is a risk of a bias in the sample to those

with a higher level of education. The percentage per cluster of refusals is shown in figure

47, and cluster 9, which was the cluster with the largest percentage of unemployment,

has the second highest rate of refusals - the mean is 4.8% and cluster 9 is 8.1%.
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Figure 46: Percentage of each cluster which has education Intermediate Certificate Level

or less, ordered by percentage; and the percentage of the sample shown by an intersecting

line.

Figure 47: Percentage of each cluster which refused to give education level, ordered by

percentage; and the percentage of the sample shown by an intersecting line.

7.4 Movement between clusters

In training the SOM and the above analysis, each household had up to 33 different days

as input vectors. There were no constraints when training to keep households in the

same cluster, or to set a minimum number of households in each cluster. It is possible
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that a household could feature in all clusters, or that a cluster could be composed of

just one household - the latter of these is not true due to least number of input vectors

in a cluster being 388. McLoughlin et al. (2015) clustered the electricity load profiles

in a similar way, and set the cluster (they refer to a cluster as a profile class) that each

household occupies for the majority of the time as that household’s overall profile class.

To find out the number of clusters each households featured in, the R code used:

library(dplyr}

##How many times does each household go to different cluster

hh_diff_clusters=som_survey_m3b %>% group_by(ID,cluster)

%>% summarise(n=n())

##How many different clusters per household

hh_cluster_count=hh_diff_clusters %>% group_by(ID,Emp2,SC3,Edu2,FP)

%>% summarise(clusters=n())

##Over 33 days, how many different clusters does each household

##get attributed to

ggplot(data=hh_cluster_count, aes(clusters)) + geom_histogram(binwidth=1)

+ labs(x = "Number of clusters per household")

+ scale_x_continuous(breaks=seq(0,13,1))

Figure 48: Histogram showing the number of clusters each households featured in over

33 days.
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The number of clusters per household is plotted in figure 48. There is a slight

left-skew, with a mean of 5.6 and median of 6. This suggests that most households are

relatively consistent with their gas use, though from this level of analysis it is not known

how many days are spent in each cluster (for example it could be 28 days in one cluster,

and 5 different days in 5 different clusters; or 5-6 days each in 6 different clusters). No

household featured in all 16 clusters, but two households did feature in 13 clusters each.

Using the 2D overhead plot that was showcased in subsection 4.4, these are plotted in

figure 49 and it can be seen that there is variation day-to-day in both the on and off

times, and the times of highest usage. For contrast, there were 42 households which

were allocated to just one cluster across all the input vectors, and two are shown in

figure 50, both showing very consistent use in terms of periods and magnitude.

Figure 49: 2D plot showing gas consumption in the training data, for two households

allocated to 13 different clusters.

ID: 1247 ID: 1520
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Figure 50: 2D plot showing gas consumption in the training data, for two households

allocated to one cluster for all input vectors.

ID: 1329 ID: 2187

The final piece of analysis takes what McLoughlin et al. (2015) did as part of their

research, and finds for each household which is the most common cluster it is allocated

to. This is a useful base for further research into what external factors might cause a

household to move away from their most common behaviour. The R code to do this is

as follows; a small random number is generated for cases where two clusters feature the

same number of times for a household:

##Take most common cluster for each customer

##Some households are in two or more clusters the same amount of times

##Generate random number for each row and take the maximum of these

set.seed(25817)

hh_diff_clusters$rdm=runif(nrow(hh_diff_clusters), 0,0.01)

hh_diff_clusters$nrdm=hh_diff_clusters$n+hh_diff_clusters$rdm

hh_cluster_max= hh_diff_clusters%>%group_by(ID)

%>%filter(nrdm==max(nrdm))%>%arrange(ID)

###How many in each cluster

cluster_hh_count = hh_cluster_max%>%group_by(cluster)

%>% summarise(households=n())
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Table 7: Counts of input vectors and households per cluster.

Cluster % of input vectors % of households Difference

1 10 9.1 -0.9

2 5.4 6.1 0.7

3 6.7 6.1 -0.6

4 9.3 11.7 2.4

5 1.9 1.7 -0.2

6 1.2 1.2 0.0

7 19.6 24.7 5.1

8 1 0.7 -0.3

9 2.2 2.2 0.0

10 2.4 1.2 -1.2

11 7.6 5.2 -2.4

12 6.4 4.4 -2.0

13 7.2 4.3 -2.9

14 1.2 1.1 -0.1

15 12.9 14.8 1.9

16 5.1 5.4 0.3

Compared to the allocations of the input vectors of the SOM, the households per

cluster is similar, see table 7, though the largest three clusters become larger.

7.5 Summary

There is definitely evidence that clusters can be used to highlight households who may

be at risk of fuel poverty, or at least demonstrate factors associated with fuel poverty,

namely employment status. The focus has been on those on the left-hand side of the

plots, but those right-hand side of the plots are also important - the clusters with very

low rates of each indicator, as they show where risk of fuel poverty is low.

Supplementary research could use the cluster information as an input in further

analysis, such as Anderson et al. (2017) did, using a logistic regression to to estimate

the probability a household being at risk. The analysis from this section can be used to

consider to a certain day, the most common clusters, or how consistent a household is

as inputs.

Using a similar approach as in this section, other factors of fuel poverty could be

applied, some of which could be inferred from the CER survey data. A key factor of fuel
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poverty is the energy efficiency of the housing stock, and within the survey there are

questions about house age, house type, and efficiency measures in place, for example.
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8 Discussion

This dissertation has examined how households consume gas throughout the day, and

methods to group households based on their consumption profiles. The data used for

the analysis was provided by the Commission for Energy Regulation (CER) and the

Irish Social Science Data Archive (IISDA).

Previous work has been done in grouping households based on electricity load profile,

a lot of the work using the CER data, but not so for grouping based on gas consumption.

This dissertation picked methods used for the electricity data and applied them to the

gas data; a limitation found in the literature review was a lack of justifications for

decisions - such as why Beckel et al. (2014) chose to use 10 principal components; or,

how parameters were chosen - such as specifying learning rates of Self-Organising Maps.

For these reasons it is not possible to assess directly how clustering gas consumption

compares to clustering electricity consumption, as different parameters may have been

chosen.

In general, electricity and gas are consumed differently by households, with electricity

tending to have a non-zero base load powering appliances, and gas tending to be off for

large portions of the day. It would be interesting to assess how reliable certain algorithms

and learning methods are given this difference in base load.

Limitations were found with the R package kohonen in that it was a “black box”; it

would have been good to examine the changing shape of the maps as they went through

the training process as the neurons updated, and to have more control over plots. There

is a concern that the maps used in the analysis had not been trained as fully as possible;

the process was run on a single computer, and was limited in processing power and

disk space. With more time and resource, a self-programmed SOM function could be

developed, and make use of a distributed system for more iterations of training data.

With more programmability it would be easier to compare changes in parameters, or

changes in seed to test the robustness of the models.

Choosing 16 clusters was perhaps too many, as five of the smallest clusters showed

similar mean consumption, and could have been grouped together, or allocated to other

larger clusters. A penalisation could be applied to give favour to simpler models (as is

done with the Akaike Information Criterion when choosing variables); but, going to too

small a number of clusters could loose some of the individuality that has been seen. If

the objective is to identify a certain type of household, it could be expected that they

show different consumption profiles to the majority; to reduce the number of clusters

by too much and these could be lost. For example, the cluster showing over twice the

mean rate of unemployment was one of the smaller clusters.
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Analysis was done by Chelmis et al. (2015) and McLoughlin et al. (2015) on how con-

sumption changed over time for a certain building, or certain household. This was briefly

addressed in subsection 7.4 which highlighted some sample household which moved be-

tween many different clusters over the three months but more could be done. Bringing

in external factors such as the weather, or fuel price (though Harold et al. (2015) found

this to be stable) and seeing if this causes changes in consumption could be the next

step in this analysis.
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