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Abstract

The outbreak of an infectious disease can have a catastrophic effect on infrastructure, economies

and most importantly human life. In such situations, modelling how an epidemic is expected

to evolve can be an important tool. Applying mathematical and statistical models can help

policy makers by illustrating the predicted effect that changes in procedure, or the introduction

of new control measures can have.

By introducing and investigating the mathematical theory behind both deterministic and

random models, this report aims to highlight the important part epidemic modelling can play

in the real world.



Contents

1 Introduction 1

2 Defining an Epidemic 3

2.1 Terminology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.2 The base reproduction ratio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.3 Different values for r0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.3.1 The case r0 < 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.3.2 The case r0 = 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.3.3 The case r0 > 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.4 Vaccination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3 The Simple Deterministic Epidemic 10

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3.2 Modelling the simple epidemic deterministically . . . . . . . . . . . . . . . . . . 11

3.3 Solving the simple epidemic differential equation . . . . . . . . . . . . . . . . . . 11

3.3.1 The general solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.3.2 An example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.4 The epidemic curve . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.5 Time to full infection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.5.1 Comparison of T and T ′ . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.6 The simple epidemic with interacting groups . . . . . . . . . . . . . . . . . . . . 20

3.6.1 The general model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.6.2 Investigating the values for c . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.6.3 Adaptation to model vector transmission . . . . . . . . . . . . . . . . . . 24

4 The General Deterministic Epidemic 28

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.2 Modelling the general epidemic . . . . . . . . . . . . . . . . . . . . . . . . . . . 28



4.3 A threshold for the general epidemic . . . . . . . . . . . . . . . . . . . . . . . . 29

4.4 Investigating the behavior of the general epidemic . . . . . . . . . . . . . . . . . 29

4.4.1 Relating x and z . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.4.2 Bounds on the evolution of an epidemic through time . . . . . . . . . . . 30

4.4.3 The Kermack-McKendrick approximation . . . . . . . . . . . . . . . . . 31

4.4.4 The Kendall parameterisation . . . . . . . . . . . . . . . . . . . . . . . . 35

4.4.5 Numerical Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

5 Introduction to Stochastic Modelling 45

5.1 Stochastic processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

5.2 Poisson processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

5.3 Markov processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

5.3.1 Birth and death processes . . . . . . . . . . . . . . . . . . . . . . . . . . 49

6 The Simple Stochastic Epidemic 51

6.1 Modelling the simple epidemic stochastically . . . . . . . . . . . . . . . . . . . . 51

6.2 Modelling the epidemic as a Poisson process . . . . . . . . . . . . . . . . . . . . 52

6.2.1 Time to full infection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

6.3 Modelling the epidemic as a Markov process . . . . . . . . . . . . . . . . . . . . 53

6.4 Time to full infection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

6.4.1 Numerical example of finding the time to full infection . . . . . . . . . . 54

6.4.2 Finding the density for the numerical example . . . . . . . . . . . . . . . 55

6.4.3 Comparison of times to full infection . . . . . . . . . . . . . . . . . . . . 56

6.5 Deriving Kolmogorov equations for the epidemic . . . . . . . . . . . . . . . . . . 58

6.6 The Laplace transform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

6.6.1 Properties of the Laplace transform . . . . . . . . . . . . . . . . . . . . . 60

6.6.2 Applying the Laplace transform to the model . . . . . . . . . . . . . . . 60

6.6.3 Applying the Laplace transform to an example . . . . . . . . . . . . . . . 61

6.7 Probability generating functions . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

6.7.1 Properties of probability generation functions . . . . . . . . . . . . . . . 64

6.7.2 Application to the state probabilities . . . . . . . . . . . . . . . . . . . . 65

6.8 Numerical solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

7 The General Stochastic Epidemic 72

7.1 Modelling the general epidemic stochastically . . . . . . . . . . . . . . . . . . . 72

7.2 Investigating the general stochastic epidemic . . . . . . . . . . . . . . . . . . . . 73

7.3 Probability generating functions . . . . . . . . . . . . . . . . . . . . . . . . . . . 73



7.3.1 Bivariate probability generating functions . . . . . . . . . . . . . . . . . 73

7.3.2 Application to the general epidemic . . . . . . . . . . . . . . . . . . . . . 75

7.4 Numerical solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

8 Epidemic Modelling In Reality 83

8.1 Measles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

8.1.1 The general deterministic model . . . . . . . . . . . . . . . . . . . . . . . 85

8.1.2 Vaccinating in the general deterministic model . . . . . . . . . . . . . . . 88

8.1.3 Increasing the removal rate parameter . . . . . . . . . . . . . . . . . . . 89

8.1.4 Adapting the model to include inhomogeneous mixing . . . . . . . . . . . 89

8.1.5 Adapting the model to inlcude a latent period . . . . . . . . . . . . . . . 91

8.2 Disease spread in care homes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

8.2.1 Modelling an outbreak stochastically . . . . . . . . . . . . . . . . . . . . 94

8.2.2 The influence of the removal rate parameter . . . . . . . . . . . . . . . . 96

9 Discussion 100



Chapter 1

Introduction

Epidemic modelling is a key tool used by medical professionals in their fight to prevent and

control infectious diseases across the world. Recent well publicised outbreaks such as swine flu

in 2009, see The Independent (2010) article reporting on the cost of the outbreak, and the 2014

Ebola epidemic, see the BBC Ebola page (2015), have brought how these professionals deal

with such situations under the global spotlight.

A wide range of methods are employed by epidemiologists and medical experts with the

aim of managing such outbreaks. These include education, quarantining and vaccination and

are discussed further by Webber (2005, p32). However, without being able to model how a

disease has behaved in the past and may behave in the future, it is hard to quantify what

effect these measures will have. This kind of disease modelling has a strong mathematical

background, and is still a topic of mathematical research to the present day.

Drawing on a variety of books, journals and papers published over the last century, this

report aims to provide an introduction into the methodology of modelling infectious diseases

at a University MMath level, and to explore some of the interesting mathematical results that

arise in the process.

Chapter 2 provides an overview of the terminology used in the report and an introduction

to modelling using an overly simplistic method of looking at diseases.

This initial model is then developed into a dynamical system in Chapters 3 and 4, where an

epidemic is modelled deterministically. This method uses techniques from statistics and applied

mathematics to gain an insight into how a disease would behave if it was fully determined by

it’s initial state.

Chapters 4 to 7 introduce stochastic processes, discussing and demonstrating how they

can be used in the context of epidemic modelling. Modelling disease spread as a stochastic

process provides the opportunity to introduce randomness into the model which cannot be
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expressed deterministically. How the stochastic model compares to the deterministic model of

the previous chapters is also investigated and discussed.

Throughout this report, mathematical results of interest that arise from the theory are

investigated, and expanded upon if they are stated in literature. Finally, Chapter 8 implements

some of the tools developed throughout the report, exploring how the models and theory

developed in previous chapters can be applied to real world data.
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Chapter 2

Defining an Epidemic

Before beginning to model and investigate epidemics, an overview of the disease processes and

terms used in relation to epidemic modelling is needed.

2.1 Terminology

Consider a disease spreading through members of a population. Disease can be spread through a

variety of different methods including direct physical contact, dust particles carrying the disease

and vector-borne transmission. Vector-borne transmission is the case where an intermediary

such as a mosquito or rat transfers the disease between two population members. In most

cases examined here, only direct contact between population members will be considered as a

possible method of transmission. ‘Direct contact’ is defined as when two population members

are close enough for a disease to be transmitted between them, be that through the air or by

direct contact of skin, saliva or blood.

In general, each member of a population can be in one of the following three states:

• susceptible to the disease, X,

• infected with the disease, Y ,

• removed from the disease after the infection period, Z.

A population member is classed as removed when they are not, and cannot in the future, be

infected with the disease. This can occur in cases of immunity, vaccination or death. The num-

ber of susceptibles, infectives and removals in each state are denoted by x,y and z respectively.

In a homogeneous population it is assumed that any specific member has the same chance of
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Figure 2.1: The general infection process.

having a direct contact with any other individual and hence each member has equal chance of

catching the disease.

The infection rate parameter per individual per unit time is denoted by β, which describes

the rate at which the disease is spread by contacts between susceptible and infective members.

In a population with number of susceptibles equal to x, β is defined to be such that one

infected individual will transmit disease to βx susceptibles in one unit of time. The infection

rate parameter is clearly greater than zero for any situation where disease is being spread.

Different diseases behave in different ways over time, but as a general reference point, a

susceptible member of a population will follow the disease experience shown in 2.1.

2.2 The base reproduction ratio

An epidemic is defined by Gerstman (2013) to be a ‘term applied to any health-related condition

that occurs in excess of normal expectancy’. However to define this mathematically is slightly

more complicated.
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One basic way to do this is to use the base reproduction ratio, r0, as discussed by Brauer

and Castillo-Chavez (2013). This constant is defined as the average number of susceptible

members of a homogeneous population that an infective person will pass the disease onto in

their infective period. For example consider Figure 2.2. This shows one example of a disease

spreading in a closed population beginning with one infective member and six susceptible

members.

Figure 2.2: A tree diagram showing one example of how infection can spread through a popu-

lation.

In this example, the incubation and post infectious illness periods for all members both

have length 0, and each member becomes removed once they have completed their infected

period. In this case ‘infected’ and ‘infectious’ can be used interchangeably, but note this is not

always the case. It has been assumed that during their infective period, each infective member

passes the illness on to exactly r0 = 2 susceptible members.

For simplicity it has also been assumed that the infective period of these two newly infected

members starts immediately once the previous generation has ended, with all infectious periods

being equal to one generation.

In the example it is clear to see that for r0 = 2, the disease would spread through the whole

population of susceptibles quickly, infecting 2n new susceptibles at generation n. Furthermore

the total number of infected members over time forms a geometric sum. By generation n there

will have been a total of

1 + 2 + 22 + ...+ 2n =
1− 2n+1

1− 2
= 2n+1 − 1

population members infected.

5



Figure 2.3: Infected members at each generation with y0 = 5.

More generally, starting with y0 infectives and base reproduction ratio r0, the disease

would infect y0(r0)n at each generation, causing the the geometric sum representing the total

people infected by the disease up to generation n to become

y0 + y0r0 + y0r0
2 + ...+ y0r0

n = y0

(
1− r0

n+1

1− r0

)
. (2.1)

2.3 Different values for r0

Equation (2.1) can now be used to investigate how disease spreads for different values of the

base reproduction ratio. Examples of each of the three cases, r0 < 1, r0 = 1 and r0 > 1 are

illustrated up to generation 20 in Figure 2.3. This shows the number of infectives at each

generation. These three cases assume that at generation 0 there are y0 = 5 infective members

within a large population susceptible to catching the disease, with the continued assumption

from Section 2.2 that each infective period lasts one generation.

2.3.1 The case r0 < 1

When r0 < 1, equation (2.1) converges to
y0

1− r0

as n → ∞, where y0 is the initial number of

infectives at generation 0. Hence an arbitrary population of susceptibles of size x would not all

become infected providing x > y0
1−r0 . This suggests the disease would eventually die out without

any medical intervention. This makes intuitive sense as if each infected individual on average
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passed the disease on to less than one susceptible member in their infective period, the disease

would become less common with each passing generation, and would eventually disappear from

the population.

This is shown in Figure 2.3, plotted using the R code

tt=c(0:20) #time steps of 1 between 0 and 20
#new infections at each generation
I0=5
r0=1.1 #setting r0=1.1
y = I0*(r0^tt)
plot(tt, y, type="l", xlab="Generation",
ylab="Infected members",ylim=c(0,35), lty=1)
r0=0.9 #setting r0=0.9
y2= I0*(r0^tt)
points(tt,y2, type="l",lty=3,lwd=2)
r0=1 #setting r0=1
y3= I0*(r0^tt)
points(tt,y3, type="l",lty=5)
legend(0,31,c(expression(R[0]==1.1),expression(R[0]==1),
expression(R[0]==0.9)),lty=c(1,5,3),bty="n",lwd=c(1,1,2))

The dotted line representing the number of infected people when r0 = 0.9 is tending

towards zero, implying the disease is infecting less people with each passing generation. By

using the infinite geometric sum it can be seen that on average, a total of
5

1− 0.9
= 50 members

would become infected over the lifetime of this disease. This is illustrated in Figure 2.4, where

the plotted line seems to tend towards 50 as expected.

2.3.2 The case r0 = 1

When r0 = 1, on average, each infected member passes the disease onto one susceptible member

before becoming removed, so the disease infects the same amount of people at each generation.

For the line representing r0 = 1 in Figure 2.3, it is clear that the level of infected members of

the population stays constant at the original level of five infectives. This phenomenon, where

a disease is continually prevalent in a certain region, is called an endemic; see Merrill (2010).

Endemics of infectious disease are quite common and can be specific to groups such as towns

or age ranges. One example of an endemic is influenza, as it follows a seasonal pattern which

is relatively consistent from year to year with most infections in winter.

2.3.3 The case r0 > 1

When r0 > 1 an infective member, on average, passes the disease on to more than one person

in their infective period. This means, as shown in Figure 2.3, that the number of infectives
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Figure 2.4: Total infections over the course of the disease for r0 = 0.9.

Infection r0

Diphtheria 6-7

Measles 12-18

Mumps 4-7

Rubella 6-7

Smallpox 5-7

Polio 5-7

grows exponentially and is called an epidemic. This is the type of behaviour investigated in

the following chapters.

Fine (1993) gives estimates for the base reproduction ratio of different diseases. They are

given in the table above, but note these are just estimates and the value of r0 for the same

disease in different populations or places can vary.

The impact of an epidemic is determined by these base reproduction ratios and the con-

sequences of catching the specific disease. A highly infectious disease that does little to no

damage to the infectious members before recovery would provoke little government reaction

compared to a disease with a much smaller value of r0 that kills every member that becomes

infected.
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2.4 Vaccination

In an ideal world, scientists, epidemiologists and medical professionals could make use of r0

to control and stop an epidemic disease. Rather than vaccinating every population member

to eradicate an infectious disease in the state of epidemic, vaccinating a suitable proportion of

population members to cause the value of r0 to fall below unity would be sufficient to cause

the disease to die out, as discussed in Section 2.3.1. Taking the vaccination time as t = 0, to

give an initial susceptible population of size x0, this equates to vaccinating a proportion, α of

susceptibles, such that

α > 1− 1

r0

.

This gives a new base reproduction ratio, r0
new, since the population of susceptibles would now

be smaller, and equal to (1− α)x0.

This gives

r0
new = (1− α)r0 <

r0

r0

= 1,

meaning the disease would die out regardless of the number of infectives y0. For arbitrarily

quick disease die out time, the vaccinators would need only to choose α sufficiently close to

one. This would cause the value of r0
new to fall towards zero, which would mean no spread

of the disease whatsoever. In practical terms, taking α = 1 equates to vaccinating the whole

population which, assuming a fully effective vaccine, would certainly stop the spread of disease.

Consider a fully susceptible population with initial size x0 with one infective member. If

the initial infective individual makes βx0 transmissions of the disease per unit time, and if the

infectious period lasts t time units, r0 can be calculated as

r0 = βx0t.

This method of calculating the vaccination proportion makes use of the assumptions mentioned

throughout this chapter. These assumptions coupled with the fact that details such as x0, t,

β and hence r0 are hard to gauge in the fast moving nature of real world epidemics make this

way of thinking about epidemic spread difficult to put into practice.

Heffernan et al. (2005) discuss the usefulness of r0, noting that while in some simple cases

r0 can be used when investigating a disease in real time, it is not until after a disease has run

its course that r0 can be calculated with a great deal of certainty. Instead r0 = 1 is usually used

as a threshold value, with further investigation into an epidemic required when r0 > 1. In the

following chapters more succinct ways of describing how a disease spreads will be investigated

by using more involved mathematical models.
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Chapter 3

The Simple Deterministic Epidemic

3.1 Introduction

In reality, diseases do not last exactly one generation for every person before removal, they are

much more fluid than this, so the basic introductory investigation in Chapter 2 is not an ideal

way to model an epidemic. When considering epidemic populations on a large scale, the law of

large numbers implies that statistical variation due to the randomness of disease transmission

has much less impact on the overall result. In such cases the spread of an epidemic can be

approximated by deterministic methods, which model the disease flow between groups much

like a dynamical system in applied mathematics.

The simplest of deterministic models, discussed by Bailey (1957, p20) and Daley and Gani

(1999, p20), contains population members in one of two states, susceptible and infective only,

and does not consider removals from the population. Since each member can only transition

from susceptible to infective, it seems eventually the whole population would become infected.

Let the real valued continuous variable x(t) denote the number of susceptibles from a

population of size n at time t, and let the real valued continuous variable y(t) represent the

number of infectives from the same population at that time. For a closed population with no

births of deaths over the inspected time period, it is the case that

x(t) + y(t) = n, (3.1)

and once more it is assumed that this closed population mixes homogeneously and that the

infection and infective period are equal.

Even though this is a simple model of an epidemic, it could be an acceptable approxima-

tion for some diseases in reality; for example, highly infectious but non-serious diseases where

infectives will remain in contact with susceptibles for the course of the disease, such as the

common cold considered over a period of a few days.
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3.2 Modelling the simple epidemic deterministically

Recall from Section 2.1 that an infected individual will infect βx susceptibles in one unit time.

Thus the rate per unit time at which y infectives will spread the disease through the population

is
dy

dt
= βxy = β(n− y)y. (3.2)

It is intuitive to think that the rate of spread of disease is proportional to both the number

of infective and susceptible members of a population. If there are many susceptible members

in a population it will be easier for disease to spread, and similarly there will be more disease

transmissions if there are more infective members to pass the disease on. Since this is a closed

population, differentiating both sides of equation (3.1) with respect to t gives the result

dy

dt
= −dx

dt
.

That is, the rate that people are becoming infected is equal to the rate at which people are

leaving the susceptible class. This makes intuitive sense as there are only two classes which are

disjoint and contain the whole population between them.

3.3 Solving the simple epidemic differential equation

3.3.1 The general solution

Equation (3.2) can now be rewritten as

dy

y(n− y)
= βdt

which, after splitting up the left hand side by partial fractions gives

1

n

(
1

y
+

1

n− y

)
dy = βdt

which is a differential equation that can be solved by separation of variables. Thus, the equation

becomes ∫ (
1

y
+

1

n− y

)
dy =

∫
βndt.

Integrating both sides gives

ln(y)− ln(n− y) = βnt+ c

where c is a constant of integration. This simplifies to

ln

(
y

n− y

)
= βnt+ c.
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Taking exponentials of both sides and writing A = ec gives

y

n− y
= eβnt+c = Aeβnt,

which implies

y(t) =
nAeβnt

1 + Aeβnt
. (3.3)

In the most general case an epidemic starts with y0 ≥ 0 infectives at t = 0. Substituting

this initial condition into equation (3.3) gives

y0 =
nA

1 + A
,

and after rearrangement for A becomes

A =
y0

n− y0

.

Finally, the value for A can be substituted back into equation (3.3) to give the exact solution;

y(t) =

ny0

n− y0

eβnt

1 +
y0

n− y0

eβnt

=
ny0e

βnt

(n− y0) + y0eβnt
.

After multiplying the numerator and denominator through by e−βnt, this finally becomes

y(t) =
ny0

y0 + (n− y0)e−βnt
. (3.4)

3.3.2 An example

As an example, consider a population of size n = 100 with infection rate parameter β = 0.01,

and five original infectives, y0 = 5. The value of β is chosen to be 1
n

= 0.01 as in Daley and

Gani (1999, p22) so that βn = 1. This gives the solution

y(t) =
500

5 + 95e−t

which is illustrated by the solid line in Figure 3.1. Figure 3.1 also shows the behaviour of y(t)

for β = 0.02 and β = 0.005 to show the effect of changing the infection rate parameter.

12



Figure 3.1: The simple epidemic model showing y(t) for different values of β, with n = 100 and

y0 = 5.

In a population of only infectives and susceptibles, it would be expected that eventually,

all members would become infective. This can be seen in Figure 3.1; regardless of the value of

β, the number of infectives is tending towards the population limit of 100. This can be seen

mathematically by taking the limit as t tends to infinity in equation (3.4), giving

lim
t→∞

y(t) = lim
t→∞

ny0

y0 + (n− y0)e−βnt
= n

since

lim
t→∞

e−βnt = 0.

Hence this example gives y → 100.

In the simple epidemic solution, β controls how quickly the total number of infectives

converges to the population limit, with larger values of β meaning more infectious contacts per

unit time, causing the total number of infectives to rise more quickly.

3.4 The epidemic curve

Sometimes epidemiologists are more interested in the plot of
dy

dt
against t, as the rate of oc-

currence of new cases better describes an epidemical situation rather than the total number

of infected people over the lifetime of the disease given by y(t). This plot of
dy

dt
is called the

epidemic curve and can be found by substituting the solution for y(t) back into equation (3.2).

13



Figure 3.2: Plots of the number of infectives y(t) and the epidemic curve dy
dt

plotted against

time t, with n = 100, y0 = 5 and β = 0.01.

The epidemic curve is given by

dy

dt
= β(n− y)y

= β

(
n− ny0

y0 + (n− y0)e−βnt

)(
ny0

y0 + (n− y0)e−βnt

)
= β

(
ny0 + n(n− y0)e−βnt − ny0

y0 + (n− y0)e−βnt

)(
ny0

y0 + (n− y0)e−βnt

)
=

βy0n
2(n− y0)e−βnt

(y0 + (n− y0)e−βnt)2
. (3.5)

The evolution of the epidemic curve through time is shown by the dotted line in Figure 3.2.

One point of interest is the time t = t∗, when the rate of new infectives is maximal,

which is the turning point of the epidemic curve in Figure 3.2. This found by setting the time

differential of the epidemic curve equation equal to zero at t = t∗ and solving for t∗, that is

solving
d

dt

(
dy

dt

)
= 0

for t = t∗. For ease of notation when performing this calculation, the constant terms can be
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written as a = βy0n
2(n− y0) and b = n− y0. This gives

dy

dt
=

βy0n
2(n− y0)e−βnt

(y0 + (n− y0)e−βnt)2
=

ae−βnt

(y0 + be−βnt)2
,

which can be written as
dy

dt
= ae−βnt(y0 + be−βnt)−2.

Differentiating using the product rule gives

d2y

dt2
= −βane−βnt(y0 + be−βnt)−2 + 2βabne−2βnt(y0 + be−βnt)−3.

Setting this equal to zero at t = t∗ and multiplying through by (y0 + be−βnt)3 gives

0 = 2βabne−2βnt∗ − βane−βnt∗(y0 + be−βnt
∗
)

= βane−βnt
∗
(2be−βnt

∗ − y0 − be−βnt
∗
)

= βane−βnt
∗
(be−βnt

∗ − y0). (3.6)

Notice that neither the infection rate parameter β, the initial number of infectives y0, nor the

population size n would equal 0 in an epidemic of any interest. Hence equation (3.6) gives

e−βnt
∗

=
y0

b

=
y0

n− y0

by noting that b = n−y0. Finally taking logarithms of both sides and dividing through by −βn
gives

t∗ = − 1

βn
ln

(
y0

n− y0

)
=

1

βn
ln

(
n− y0

y0

)
(3.7)

since − ln(a) = ln
(

1
a

)
. Figure 3.3 shows the maximum of the epidemic curve for the example

in Section 3.3.2.

For this example, equation (3.7) gives

t∗ =
1

n
ln

(
n− y0

y0

)
= 2.944

which corresponds to the vertical line in Figure 3.3.

The maximum value of the epidemic curve can be found by substituting the value for t∗

back into equation (3.5). Since

e−βnt
∗

= e
−βn

(
1
βn

ln
(
n−y0
y0

))
= e

− ln
(
n−y0
y0

)
= e

ln
(

y0
n−y0

)
=

y0

n− y0

,
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Figure 3.3: Illustrating the maximum of the epidemic curve at t∗ = 2.944 on the plots of y(t)

and
dy

dt
against time, with n = 100, β = 0.01 and y0 = 5.

at t = t∗, equation (3.5) reduces to

dy

dt

∣∣∣∣
t=t∗

=
βy0n

2(n− y0)e−βnt
∗

(y0 + (n− y0)e−βnt∗)2
=
βy0

2n2

(2y0)2
=
βn2

4
.

In the example,
βn2

4
= 25, which corresponds to the point where the dotted horizontal line

meets the y axis in Figure 3.3, and is the maximum rate per unit time at which susceptibles

population members are becoming infective.

Substituting t = t∗ in the original differential equation solution given in equation (3.4),

gives

y(t∗) =
ny0

y0 + (n− y0)e−βnt∗
=
ny0

2y0

=
n

2
. (3.8)

This implies the rate of change of infectious members is maximal at the time when half of the

population is infectious and half is susceptible. This reinforces the point made in Section 3.1

that the rate of change of infectives is proportional to both the number of infectives and the

number of susceptibles. In the example used in this chapter, 1
2
n = 50. Therefore when there

are fifty infectious and susceptible members present in the population, the rate of change of

infectives is maximised at twenty five per unit time.
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3.5 Time to full infection

Section 3.3.2 shows that the whole population only becomes fully infected as t → ∞. For the

simple epidemic in reality, no further action can occur once all susceptibles become infected,

however when modelling this deterministically the population is not fully infected unless t→∞.

Daley and Gani (1999, p21) suggest defining the ‘end’ of an epidemic to be the time

T ′ = inf{t : y(t) > n − 1}. That is, the first time the number of infectives is within one

of the total population value. In this report the time to full infection, T , will be defined as

inf{t : y(t) ≥ n − 1
2
}, so that the total number of infectious members, rounded to the nearest

whole number, is equal to n.

The number of infectives y(t) found in Section 3.4 is a positive increasing function of time

t, since for ∆t > 0,

y(t+ ∆t) =
ny0

y0 + (n− y0)e−βn(t+∆t)

=
ny0

y0 + (n− y0)e−βnte−βn∆t

>
ny0

y0 + (n− y0)e−βnt

= y(t)

as β, n and ∆t are all greater than zero, and therefore e−βn∆t < 1. Equivalently, the fact that

y(t) is an increasing function of time t can also be deduced directly by the fact that
dy

dt
> 0

for all t. Therefore T , the smallest time t such that y(t) ≥ n − 1
2

can be found by solving the

equation

y(T ) =
ny0

y0 + (n− y0)e−βnT
= n− 1

2
.

Multiplying both sides by
y0 + (n− y0)e−βnT

n− 1
2

, and subtracting y0 gives

ny0

n− 1
2

− y0 = (n− y0)e−βnT

so that
y0

2(n− 1
2
)

= (n− y0)e−βnT .

Finally, rearranging for T gives

T =
1

βn
ln

(
2(n− 1

2
)(n− y0)

y0

)
.
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For example, if five people with influenza entered a closed hotel complex of 95 susceptible

people, with β = 0.01 and the unit of time being days, it would take

T =
1

βn
ln

(
2(n− 1

2
)(n− y0)

y0

)
= 8.24

days for every member of the hotel to be infected using the definition of the end of an epidemic

given in this section and assuming homogeneous mixing between the whole population.

3.5.1 Comparison of T and T ′

By exactly the same working, but using the Daley and Gani (1999, p21) definition of the end

time T ′ of an epidemic, the time to full infection is found to be

T ′ =
1

βn
ln

(
(n− 1)(n− y0)

y0

)
.

Substituting in the example values β = 0.01, n = 100 and y0 = 5, gives

T ′ =
1

βn
ln

(
(n− 1)(n− y0)

y0

)
= 7.54,

a quicker time to full infection.

This is illustrated in Figure 3.4, which shows the value of T and T ′ for changing n. The

plots imply that, with β = 0.01 and y0 = 5, the T ′ definition of the end of an epidemic will

lead to a shorter epidemic than the definition used in this report.

Note that for small population sizes, the time to full infection becomes negative. Intu-

itively for T , this should occur when n− 1
2
< y0 as for n− 1

2
= y0, the epidemic is immediately

defined as finished, so T = 0. This can be proved by conditioning T ≥ 0. This implies

1

βn
ln

(
2(n− 1

2
)(n− y0)

y0

)
≥ 0,

which means

2(n− 1
2
)(n− y0)

y0

≥ 1

and so (
n− 1

2

)
(n− y0) ≥ y0

2
.
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Figure 3.4: Plotting the values of T and T ′ for changing n, with β = 0.01 and y0 = 5.

After rearrangement this leaves the result

n− 1
2
≥ y0,

with T = 0 in the case of equality.

By exactly the same reasoning it can be shown that conditioning T ′ ≥ 0 gives n− 1 ≥ y0.

As shown in Figure 3.4, T = 0 for a slightly smaller population size than T ′, which is to be

expected as T ′ defines an epidemic to be finished for a slightly smaller number of infectives

than T .

Through all values of n, T > T ′ is always the case providing β and y0 are preserved

between the two definitions since

T − T ′ = 1

βn

[
ln

(
2(n− 1

2
)(n− y0)

y0

)
− ln

(
(n− 1)(n− y0)

y0

)]
=

1

βn
ln

(
2(n− 1

2
)(n− y0)

(n− 1)(n− y0)

)
=

1

βn
ln

(
2n− 1

n− 1

)
.

In an epidemic of interest, n will always be at least two, therefore 2n−1
n−1

> 1 and since the

logarithm is an increasing function,

ln

(
2n− 1

n− 1

)
> ln(1) = 0.
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Figure 3.5: Illustrating the interacting group process for two groups, where βi is the infection

rate within group i, and βij the infection rate from group i to group j.

This means

T − T ′ = 1

βn
ln

(
2n− 1

n− 1

)
> 0

and consequently T > T ′.

3.6 The simple epidemic with interacting groups

3.6.1 The general model

In reality diseases may spread differently between locations or communities, whilst still spread-

ing in the population as a whole.

For example, imagine the spread of disease in two neighbouring countries. Each is affected

by the disease spread internally within each country, and externally by members of each country

crossing the border into the other. In this case, a country can be thought of as a separate group,

group 1 of 2 say, with it’s own internal number of infectives x1, susceptibles y1, and infection

parameter, β1. The spread of disease from group 1 to group 2 can then be denoted by a separate

infection parameter β12 and similarly the infection rate parameter from group 2 to group 1 is

denoted by β21.

This is illustrated in Figure 3.5, reproduced from Daley and Gani (1999, p23). More

generally, if there are m different communities, let the number of susceptibles and infectives
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for the ith community, of total size ni, be denoted by xi and yi respectively, for i = 1, . . . ,m.

Additionally, let βi be the internal infection rate in community i per unit time, and βji be the

external infection rate from community j to community i per unit time.

Then, as in Section 3.2, the rate of change of infectives within group i is βixiyi. However,

in the interacting groups model, this is augmented with external groups causing infections in

group i. This will happen at a rate βjixiyj for every other group j, such that j 6= i. Therefore

altogether the will be an external rate of infection in group i of
∑
j 6=i

βjixiyj.

Under the homogeneous mixing assumption this leads to a system of m differential equa-

tions, first proposed by Rushton and Mautner (1955), of the form

dyi
dt

= βixiyi +
∑
j 6=i

βjixiyj (3.9)

for i = 1, . . . ,m.

Note that for one group, m = 1, there is only one differential equation,

dy1

dt
= β1x1y1,

which is as expected as this is just the general case of the simple epidemic, solved in Section

3.3.

Assumptions as to the structure of the interacting groups can be made to greatly simplify

the model. Assuming a common internal infection rate parameter such that βj = β for all j,

and a common external rate as some proportion c of this internal rate so βij = cβ, leads to the

simplification

dyi
dt

= βxiyi + cβ
∑
j 6=i

xiyj

= βxi

(
yi + c

∑
j 6=i

yj

)
.

These assumptions can be sometimes justified as it is expected that the infection rate parameter

between and inside different groups respectively should be quite close, especially when the

groups have fairly similar conditions, such as neighbouring countries. It also provides cases

where the solution to the differential equation can be derived exactly.

3.6.2 Investigating the values for c

For c = 1, the internal and external infection rate parameters for all groups are equal, meaning

there is essentially just one big group, the whole population of size N =
m∑
i=1

ni, with
m∑
i=1

yi(t)
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infectives at time t. Adapting the solution to the simple epidemic given in equation (3.4) for

this case gives

y(t) =

N

m∑
i=1

yi:0

m∑
i=1

yi:0 + (N −
m∑
i=1

yi:0)e−βNt
.

where y(t) is the total number of infectives in the whole system at time t and yi:0 is the initial

number of infective members of group i. Therefore the case c = 1 can just be considered as in

Section 3.3 and does not need to be considered in the interacting groups model.

For c = 0, there is no external interaction between groups, and hence equation (3.9)

becomes a set of m independent differential equations of the form

dyi
dt

= βxiyi

for i = 1, . . . ,m. This is a system of m independent simple epidemics, each which can be

solved in the same way as in Section 3.3. This type of isolation between groups could occur,

for example, between a set of mixing countries if border crossings were forbidden for a period

of time to stop a common disease passing further between countries. Each country would have

an independent model, and the set as a whole would have a total population of
m∑
i=1

ni, with

m∑
i=1

yi(t) infectives at time t, governed by the solution given in Section 3.3,

yi(t) =
niyi0

yi:0 + (ni − yi:0)e−βnit
.

for i = 1, . . . ,m.

To find a range for the constant c, recall that from Chapter 2, an epidemic occurs when

infectious members pass the disease on to more than one susceptible member on average in

their infectious period. In the continuous time deterministic setting being considered here, this

corresponds to the constraint that the rate of change of infectives at t = 0 must be positive,

also stated by Bailey (1957, p23). That is,

dy

dt

∣∣∣∣
t=0

> 0.

This fact implies for an epidemic to start in each group, it must be the case that

βxi:0yi:0 + cβxi:0
∑
j 6=i

yj:0 > 0
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which, after rearrangement, gives

c >
−yi:0∑
j 6=i

yj:0
.

To gain a crude bound on this expression, first note that 1 ≤ yi:0 ≤ ni ≤ max(nj) for j =

1, . . . ,m. Therefore, −yi:0 ≥ −max(nj) for all j and

1∑
j 6=i

yj:0
≥ 1∑

j 6=i

max(nj)
=

1

(m− 1) max(nj)
.

Combining these two ideas together gives

c ≥ −max(nj)

max(nj)(m− 1)
=
−1

m− 1
.

Now, note that m = 0 means there are no groups and hence no population to consider,

so this case can be discounted. Furthermore, the case of m = 1 considered in Section 3.6.1 was

just the case of the simple epidemic solved in Section 3.3, and hence there would be no need to

consider this in the interacting groups model, since there is only one group. Then, for m ≥ 2,

f(m) =
−1

m− 1
is a monotone increasing function of m, as implied by Figure 3.6 and proved

mathematically by taking

−1

(m+ 1)− 1
− −1

m− 1
=
−1

m
+

1

m− 1

=
1

m(m− 1)
> 0

for m ≥ 2. Therefore f(m) is smallest on the interval [2,∞) at m=2. This leads to the

constraint that for an epidemic to begin between two or more groups in the simple interacting

group model, it must be the case that

c > −1.

If each group size ni = n for all i, and all initial values yi0 are the same, yi:0 = y0, then

from the assumptions made, each group has exactly the same size, infection rates, and initial

conditions. Due to the lack of randomness in deterministic models, this means that every group

evolves identically through time according to

dyi
dt

= βxiyi + βcxi
∑
j 6=i

yj.

But, because they evolve identically for all i, xi = xj = x and yi = yj = y for all t, which leads

to the equation
dy

dt
= βxy + βxyc(m− 1) = β(1 + c(m− 1))xy.
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Figure 3.6: Illustrating the monotonic increasing nature of the function f(m) = −1
m−1

when

plotted against m for m ≥ 2.

Therefore the number of infectives for any group evolves through time according to the equation

y(t) =
ny0

y0 + (n− y0)e−β(1+c(m−1))nt
.

3.6.3 Adaptation to model vector transmission

The interacting group model can also be used to gain an initial idea of how a disease transmitted

to humans by an intermediary vector such as a mammal can behave over a short period of time

relative to the life of a mammal, so that the two population sizes remain constant.

Consider a disease where the group of mammals can infect each other, and humans, with

the disease, however humans cannot infect mammals or each other. One example of such a

disease is Rabies, which can be passed between all living mammals through the transfer of

saliva, and passed to humans when bitten by an infected mammal.

By taking humans as group 1 and other mammals as group 2, this equates to taking

β1 = 0 and β12 = 0 to give the relationship as shown in Figure 3.7.

This simplifies the system of equations (3.9) to

dy1

dt
= β21x1y2 (3.10)

dy2

dt
= β2x2y2. (3.11)

Equation (3.11), governing the number of mammal infectives, evolves independently of how the

human infectives evolve. Hence it is just the case of a simple epidemic, and gives the solution

y2(t) =
n2y2:0

y2:0 + (n2 − y2:0)e−β2n2t
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Figure 3.7: Interacting group model representing mosquito caused human infection.

where y2:0 is the number of infective mammals at time 0. This solution for y2 can be substituted

into equation (3.10) to eliminate the dependence on y2, changing

dy1

dt
= β21(n1 − y1)y2,

into ∫
dy1

β21(n1 − y1)
=

∫
n2y2:0dt

y2:0 + (n2 − y2:0)e−β2n2t
.

Dealing with the left-hand side first gives∫
dy1

β21(n1 − y1)
= − 1

β21

ln(n1 − y1) + c1

with c1 being the constant of integration. The fact that

d

dt

(
1

β2n2y2:0

ln(y2:0e
β2n2t + (n2 − y2:0))

)
=

1

β2n2y2:0

· β2n2y2:0e
β2n2t

y2:0eβ2n2t + (n2 − y2:0)

=
1

y2:0 + (n2 − y2:0)e−β2n2t

can be used to integrate the right hand side. This gives

n2y2:0

∫
dt

y2:0 + (n2 − y2:0)e−β2n2t
=

1

β2

ln(y2:0e
β2n2t + (n2 − y2:0)) + c2
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where c2 is a constant of integration.

Now, combining these two results and redefining the constant term gives

ln(n1 − y1) = −β21

β2

ln(y2:0e
β2n2t + (n2 − y2:0)) + c3

which after rearrangement for y1 and setting A = ec3 becomes

y1(t) = n1 − A(y2:0e
β2n2t + (n2 − y2:0))

−β21
β2 .

Imposing the initial condition of y1(0) = y1:0 at t = 0 leads to

y1:0 = n1 − A(y2:0 + (n2 − y2:0))
−β21
β2

= n1 − An
−β21
β2

2 .

Upon rearrangement for A this gives

A =
n1 − y1:0

n
−β21
β2

2

leading to the exact solution

y1(t) = n1 −
n1 − y1:0

n
−β21
β2

2

(
y2:0e

β2n2t + (n2 − y2:0)
)−β21

β2 .

For the solution to be bounded as t→∞ the condition β21 > 0 must be imposed. This forces
−β21

β2

< 0, since β2 > 0 by definition, and hence

(
y2:0e

β2n2t + (n2 − y2:0)
)−β21

β2 → 0

as t→∞.

Two examples of the system are shown in Figure 3.8. Both plots have n1 = n2 = 100,

y1:0 = 0, y2:0 = 5, and β2 = 0.05, with Figure 3.8 (top) showing the evolution of y(t) with

β21 = 0.01 and Figure 3.8 (bottom) showing the case with β21 = 0.7. Small population sizes

like this could be used to model an outbreak of rabies in a large dog kennel with human staff

that could become infected by the dogs.

From Figure 3.8 it can be seen that increasing the rate at which the dogs infect humans

does not affect how quickly the mammals become fully infected, as the curve representing

y2 is the same in both plots. This is because, as mentioned earlier, the mammal epidemic

evolves independently of the human epidemic. However, it does affect how quickly the human

population becomes infected, with a higher mammal to human infection rate leading to a

quicker time for humans to become fully infected, which makes intuitive sense.
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Figure 3.8: Number of infective members of each group in the interacting group model with

n1 = n2 = 100, y1:0 = y2:0 = 5, β2 = 0.05, β21 = 0.01 (top) and β21 = 0.7 (bottom).
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Chapter 4

The General Deterministic Epidemic

4.1 Introduction

Over longer periods of time, it is unrealistic to assume that every infective member stays in

that state until the epidemic has finished. It is reasonable to think that some of these infective

members may recover and gain immunity from the disease, be isolated from susceptibles due

to their illness, or in the worst case, die from the illness.

While in reality these three cases have extremely different outcomes, when modelling

epidemics deterministically they can all be considered to be part of one class of removals, as

these members are no longer infective or susceptible to becoming infective again. In keeping with

the definitions from Section 3.1, let z(t) represent the number of removals from the disease over

the course of the epidemic, meaning that the fixed total population size is n = x(t)+y(t)+z(t).

A population member can then transition from susceptible to infectious in the same way as in

Chapter 3. However once in the infective state, infectious members can leave to the removed

state, at removal rate γ per infective member per unit time.

4.2 Modelling the general epidemic

As in Section 3.2, a set of differential equations to model the behaviour of this system can be

derived, originally proposed by Kermack and McKendrick.

The transition from susceptible to infective is made under conditions identical to the

simple epidemic. Hence, again with infection parameter rate β, the rate of change of susceptibles

is
dx

dt
= −βxy. (4.1)

As in Chapter 3, the rate of susceptibles becoming infective is still βxy. However it is
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now possible for infectious members to become removed. As stated in Section 4.1, members

are becoming removed with rate γ per infective per unit time, and so for y infectives, the rate

of infectives leaving the infectious class is γy. Combining these two results gives

dy

dt
= βxy − γy. (4.2)

Members are joining the removed class from the susceptible class at rate γ per infec-

tive, and once a member is removed, they remain removed. This leads to the third and final

differential equation
dz

dt
= γy. (4.3)

As removals take place as the epidemic evolves and not before, initially at t = 0, x(0) = x0,

y(0) = y0 and z(0) = 0.

4.3 A threshold for the general epidemic

As mentioned in Section 3.6, the condition for an epidemic to begin is

dy

dt

∣∣∣∣
t=0

> 0.

Recalling equation (3.2), for the simple epidemic

dy

dt
= βxy,

which is always non-negative since β > 0, x(t) ≥ 0 and y(t) ≥ 0. However for the general

epidemic, and specifically equation (4.2) this is not always the case.

For
dy

dt

∣∣∣∣
t=0

> 0 to be satisfied in equation (4.2), it is required that

x0 >
γ

β
= ρ

where ρ is defined as the relative removal rate for ease of future notation; see Bailey (1957, p22).

This means that for an epidemic to occur, the initial number of susceptibles in a population

must be over the the threshold amount of ρ.

4.4 Investigating the behavior of the general epidemic

4.4.1 Relating x and z

Notice that equation (4.1) can be written as

1

x

dx

dt
= −βy (4.4)
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and that equation (4.3) can be written as

1

γ

dz

dt
= y. (4.5)

Now substituting the equation for y in equation (4.5) into equation (4.4) gives

1

x

dx

dt
= −β

γ

dz

dt
= −1

ρ

dz

dt
.

After multiplying through by dt and integrating this becomes

ln x = −z
ρ

+ c

where c is a constant of integration. Finally, taking exponents of both sides and writing A = ec

gives the general solution

x(t) = Ae−
z(t)
ρ . (4.6)

The particular solution for equation (4.6) can be found in this case by recalling the initial

conditions x(0) = x0 and z(0) = 0. Substituting in these values gives

x0 = A

and hence

x(t) = x0e
− z(t)

ρ . (4.7)

4.4.2 Bounds on the evolution of an epidemic through time

To begin to look at how the equations evolve through time, the differential equations, and hence

their solutions can be bounded.

Since y(t) ≤ n implies −y(t) ≥ −n, equation (4.4) can be bounded by

dx

dt
= −βxy ≥ −βxn.

Therefore

x(t) ≥ Ae−βnt

which, when applying the initial conditions of x(0) = x0 > 0 at t = 0, gives a bound on x(t) to

be

x(t) ≥ x0e
−βnt > 0. (4.8)

Furthermore,
dx

dt
is negative for all t, and therefore x(t) is a strictly decreasing function

that is bounded below, so will converge to some finite value x∞, say.
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This implies z(t) ≥ 0 cannot diverge to infinity, as this would cause x(t) in equation (4.7)

to tend to zero, which has been shown in equation (4.8) to not be the case. Moreover, because

x(t) converges to a finite value, z(t) must also converge to some finite value z∞, related to x∞

by the limit of equation (4.7),

x∞ = x0e
− z∞

ρ . (4.9)

Finally, it is still required that the total population has size n regardless of time. Con-

sidering x(t) + y(t) + z(t) = n as t→∞ implies that y(t) must also converge to a finite limit,

denoted y∞, as otherwise the constraint would not hold. Furthermore, it must be the case that

y∞ = 0, otherwise
dz

dt
would not tend to zero as t increases, which is required to have a finite

z∞.

4.4.3 The Kermack-McKendrick approximation

Recalling that x(t) + y(t) + z(t) = n, substituting equation (4.7) into equation (4.3) gives

dz

dt
= γy

= γ(n− z − x) (4.10)

= γ(n− z − x0e
− z
ρ ). (4.11)

This differential equation cannot be solved in its current form, however Kermack and McK-

endrick (1927) proposed an approximation to the exponential term which gives an integrable

equation, elaborated on by Daley and Gani (1999, p30).

Recalling the Maclaurin expansion of the exponential function

ex =
∞∑
n=0

xn

n!
,

equation (4.11) can be approximated by

dz

dt
≈ γ

(
n− z − x0

(
1− z

ρ
+

z2

2ρ2

))
= γ

(
n− x0 +

(
x0

ρ
− 1

)
z − x0

2ρ2
z2

)
= γ

(
y0 +

(
x0

ρ
− 1

)
z − x0

2ρ2
z2

)
. (4.12)

Figure 4.1 shows how increasing the number of terms in the expansion of e−
z
ρ affects

the approximation. The left hand side plot shows the approximation to dz
dt

with just the first,
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Figure 4.1:
dz

dt
with n = 100, β = 0.01, γ = 0.01 and y0 = 5 for changing z plotted with a

constant exponential approximation (left), a linear exponential approximation (centre) and a

quadratic exponential approximation (right).

constant, term of the exponential expansion; the central plot shows the exponential function

approximated by 1− z

ρ
, and finally the right hand side plot shows the expansion up to second

order used in equation (4.12).

From the graph, it is clear the approximations are only useful for small z, therefore when

performing the expansion to derive equation (4.12), it is assumed that
z

ρ
is small, since ρ is

constant. Although the second order term in the exponential expansion is usually taken to be

small with respect to the first order term, and hence ignored, here it is needed since, as seen in

equation (4.12), the first order term may also be small. This occurs for x0 close to the threshold

ρ, so the second order term is required to keep a stable approximation at this point.

Equation (4.12) can then be written as

dz

y0 +
(
x0
ρ
− 1
)
z − x0

2ρ2
z2

= γdt, (4.13)

which can be solved by integrating both sides. The right hand side can be easily integrated to

give ∫
γ dt = γt+ d1,

where d1 is a constant of integration.

The left hand side of equation (4.13) can be solved using the standard integral given in

Bronshtein and Semendyayev (1973, p415),∫
dz

Z
=
−2√
−∆

tanh−1

(
2az + b√
−∆

)
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where Z = az2 + bz + c and ∆ = 4ac− b2 < 0.

Writing

a = − x0

2ρ2
, b =

x0

ρ
− 1, c = y0

gives the integral form consistent with the left hand side of equation (4.13) and the fact that

∆ = 4ac− b2 = −2x0y0

ρ2
−
(
x0

ρ
− 1

)2

< 0

shows the standard result can now be implemented. By letting

α =
√
−∆ =

√
2x0y0

ρ2
+

(
x0

ρ
− 1

)2

,

equation (4.13) can be written as

−2

α
tanh−1

(
2az + b

α

)
= γt+ d2

where d2 is a new constant of integration. Multiplying through by −1
2
α and redefining the

constant term gives

tanh−1

(
2az + b

α

)
= −1

2
αγt+ d3

and rearranging for z(t) gives

z(t) =
1

2a

(
α tanh

(
−1

2
αγt+ d3

)
− b
)
. (4.14)

By recalling the initial condition z = 0 at t = 0, the constant term is found to be d3 =

tanh−1
(
b
α

)
. Using this fact, and re-substituting in for a and b gives

z =
−ρ2

x0

(
−
(
x0

ρ
− 1

)
+ α tanh

(
−1

2
αγt+ d3

))
=
ρ2

x0

(
x0

ρ
− 1− α tanh

(
−1

2
αγt+ d3

))
.

Finally, by using the exponential definition of tanh, it is seen that

− tanh(x) = −
(
ex − e−x

ex + e−x

)
=
e−x − e−(−x)

e−x + e−(−x)
= tanh(−x).

so, tanh is an odd function. This then gives the final approximation of

z =
ρ2

x0

(
x0

ρ
− 1 + α tanh

(
1
2
αγt− d3

))
, (4.15)
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Figure 4.2: Plot of the approximation of z through time with n = 100, β = 0.01, γ = 0.01 and

y0 = 5.

where

α =

√
2x0y0

ρ2
+

(
x0

ρ
− 1

)2

,

and

d3 = tanh−1
( x0

ρ
−1

α

)
.

This agrees with the result given in Daley and Gani (1999, p30).

An example of the evolution of z(t) through time can be seen in Figure 4.2 in the case

where n = 100, β = 0.01, γ = 0.01 and y0 = 5. Figure 4.2 reinforces the result in Section 4.4.2,

which states that z(t) has some limiting value in this approximation, ẑ∞, which in this example

seems to be close to two.

This can be more closely analysed by looking at the behaviour of equation (4.15) as

t→∞. To do this, because t is contained in the tanh(x) expression, it would first make sense

to understand how tanh behaves asymptotically. The plot of tanh(x) given in Figure 4.3 seems

to tend to one as x → ∞. This can be seen explicitly by taking the limit of the exponential

definition of tanh(x) as x tends to infinity,

lim
x→∞

tanh(x) = lim
x→∞

(
ex − e−x

ex + e−x

)
= lim

x→∞

(
1− e−2x

1 + e−2x

)
= 1.
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Figure 4.3: A plot of tanh(x) against x.

Therefore, since α, γ and d3 are all constants, with α ≥ 0 and γ ≥ 0,

lim
t→∞

tanh
(

1
2
αγt− d3

)
= 1

and hence

ẑ∞ = lim
t→∞

ρ2

x0

(
x0

ρ
− 1 + α tanh

(
1
2
αγt− d3

))
=
ρ2

x0

(
x0

ρ
− 1 + α

)
.

For the example illustrated in Figure 4.2,

ẑ∞ =
ρ2

x0

(
x0

ρ
− 1 + α

)
= 2.031.

Using the earlier specified example, the approximation states there will be two removals from

the disease over the course of the epidemic. This asymptote is added to the plot of z(t) against

t as the dashed line in Figure 4.4.

4.4.4 The Kendall parameterisation

As an alternative to the Taylor series approximation of Kermack and McKendrick (1927) pro-

posed in Section 4.4.3, Kendall (1956) proposed that, by allowing β to vary as a specific function
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Figure 4.4: Plot of z(t) against time t with n = 100, β = 0.01, γ = 0.01 and y0 = 5.

of z rather than a constant as previously assumed, equation (4.11) holds exactly for small z.

Specifically Kendall stated that taking

β(z) =
2β(

1− z
ρ

)
+
(

1− z
ρ

)−1

led to equation (4.12), with the added constraint that z is small, specifically z < ρ, otherwise

the infection rate parameter would become negative.

Conveniently, taking β in this form leads to an exact version of the approximation in

Section 4.4.3. The proof that this occurs, omitted by Bailey (1957, p24), is shown below.

Firstly, combining equations (4.1) and (4.3) gives

dx

dt
= −β(z)

1

γ

dz

dt

and integrating both sides with respect to t leads to∫ x(t)

x0

du

u
= log x(t)− log x0 = −1

γ

∫ z(t)

z=0

β(w)dw.

Therefore

x(t) = x0e
− 1
γ

∫ z(t)
z=0 β(w)dw.
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Then substituting this form for x into equation (4.10) gives

dz

dt
= γ

(
n− z − x0e

− 1
γ

∫ z
0 β(w)dw

)
.

The integral within the exponential function can be calculated as

−1

γ

∫ z

0

β(w)dw = −1

γ

∫ z

0

2β dw(
1− w

ρ

)
+
(

1− w
ρ

)−1

= −2β

γ

∫ z

0

dw(
1− w

ρ

)
+
(

1− w
ρ

)−1 .

After multiplying through by

(
1− w

ρ

)
(

1− w
ρ

) this becomes

−1

γ

∫ z

0

β(w)dw = −2

ρ

∫ z

0

1− w
ρ(

1− w
ρ

)2

+ 1
dw.

This can then be solved by the substitution u = 1 − w
ρ

, which implies that dw = −ρ du and

that the limits of integration change from w = 0 and w = z to u = 1 and x = 1− z
ρ

respectively.

Performing this substitution gives

−1

γ

∫ z

0

β(w)dw = −2

ρ

∫ z

0

1− w
ρ(

1− w
ρ

)2

+ 1
dw.

= 2

∫ 1− z
ρ

1

u

1 + u2
du

= 2
[

1
2

ln(1 + u2)
]1− z

ρ

1

= ln

(
1 +

(
1− z

ρ

)2
)
− ln(2)

= ln

(
2− 2z

ρ
+
z2

ρ2

)
− ln(2)

= ln

(
1− z

ρ
+

z2

2ρ2

)
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Figure 4.5: Plots of β and β(z) against z with β = 0.01 and ρ = 1.

since ln(a)− ln(b) = ln
(a
b

)
. Therefore,

dz

dt
= γ

(
n− z − x0e

− 1
γ

∫ z
0 β(w)dw

)
= γ

(
n− z − x0e

ln
(

1− z
ρ

+ z2

2ρ2

))
= γ

(
n− z − x0

(
1− z

ρ
+

z2

2ρ2

))
= γ

(
n− x0 + z

(
x0

ρ
− 1

)
− z2

2ρ2

)
which is equivalent to the result derived when using the Taylor series expansion in equation

(4.12). However, note that

β(0) =
2β(

1− 0
ρ

)
+
(

1− 0
ρ

)−1 = β

and Figure 4.5, reproduced from Daley and Gani (1999, p32), shows that β(z) ≤ β for z ≤ ρ.

It follows that the infection rate parameter β is underestimated by β(z), and so the size of the

epidemic approximated in Section 4.4.3 and this section will also be underestimated. To counter

this and try and find an exact solution, Kendall (1956) viewed the epidemic more generally,

writing equation (4.11) as
1

γ

∫ z

0

dw

n− w − x0e
−w
ρ

= t. (4.16)

38



As t → ∞, z(t) → z∞ which is the unique positive root of g(z) = n − z − x0e
−z
ρ . This

can be shown by using equation (4.9) and the fact that y∞ = 0 to give

g(z∞) = n− z∞ − x0e
−z∞
ρ

= x∞ + y∞ + z∞ − z∞ − x∞
= 0

and therefore equation (4.16) is limited by 0 ≤ z < z∞. This means the exact value of the z∞

asymptote in Figure 4.6 (left) can be found by solving

g(z) = n− z − x0e
−z
ρ = 0

for z ≥ 0. This cannot be solved exactly but solving by numerical methods on R with the code

x=c(-100000:150000)*0.001
f1=function(x) (100-x-95*exp(-x))
uniroot(f1,c(0,1000))
$root
100

gives z∞, as shown in Figures 4.6 (left) and 4.8 (top), to be 100.

This value for z∞ is quite different to the approximation given in Section 4.4.3. Since the

approximation is only appropriate for small z, the estimate ẑ∞ does not necessarily correspond

well to the exact value of z∞. This is highlighted for this example in Figure 4.6 where for small

z, the values are well matched, while as z increases the exact and approximate curves for z(t)

are far apart. In this case, the exact curve for z has been found using the numerical method

described in the following Section 4.4.5.

Higher values for γ, with everything else constant, means a higher removal rate, so infective

members are removed quicker, and hence infect fewer people during this time. This leads to a

lower number of infected members in total, and therefore a lower number of removals. Figure

4.7 illustrates this fact, and since the total evolution of removals takes place over smaller z(t),

the approximation for the whole evolution of removals improves, however there is still a slight

underestimation of the exact size of removals as noted earlier.

Figure 4.8 shows the function g(z) plotted against z. It can be seen that g(z) = 0 has a

second root, at z = z−∞. This second root is the first time g(z) crosses the axis in the top plot

of Figure 4.8, and is shown more explicitly in the lower plot, which focuses on a smaller region

of the top plot to show z−∞ more clearly. Again using R to solve g(z) = 0 with n = 100, x0 = 95

and ρ = 1 it is found that z−∞ = −0.052.

Daley and Gani (1999, p32) suggest the deterministic epidemic can be thought of as

spanning the time interval (−∞,∞), beginning at t = −∞ with a total population of size
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Figure 4.6: Plot of exact and approximate z(t) through time with n = 100, β = 0.01, γ = 0.01

and y0 = 5 (left), and the same plot focused on the region of small z (right).

Figure 4.7: Plot of exact and approximate z(t) through time with n = 100, β = 0.01 ,y0 = 5

and γ = 0.01 (left), γ = 0.5 (centre) and γ = 0.99 (right).
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Figure 4.8: Plot of g(z) against z with n = 100, y0 = 5 and ρ = 1 (top), and the same plot

magnified about z = 0 (bottom)

N = n + |z−∞|, with a very small number ε of infectives, and N − ε susceptibles. Then, from

t = −∞ to t = 0 there will be |z−∞| removals and the number of infectives will evolve from ε to

y0. This returns the familiar initial conditions of x0 susceptibles, y0 infectives and 0 removals

at t=0. Then as t → ∞ the epidemic finally evolves to x∞ susceptibles, z∞ removals and 0

infectives as discussed earlier.

The intensity of an epidemic is then defined by Daley and Gani (1999, p33) to be

i =
|z−∞|+ z∞

N

where 0 < i ≤ 1. The case i = 1 occurs when all members of the population become infected

and then removed throughout the course of the disease, as in this case z∞ = n. This can be

used to compare the strength of epidemics by examining the relative number of removals after

infection.

The example used throughout this chapter with n = 100, ρ = 1 and y0 = 5 has z∞ =

100 = n and z−∞ = −0.052. Also, recall N = n+ |z−∞|, so that

i =
|z−∞|+ z∞

N
=
|z−∞|+ n

n+ |z−∞|
= 1.

This example gives the highest intensity possible; all population members become infected and

then removed.
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As a second example recall the parameters used in Figure 4.7; where n = 10, ρ = 14 and

y0 = 1. This gives z∞ = 2.439, implying that roughly 7 population members remain uninfected

after the epidemic has run it’s course. Furthermore, z−∞ = −13.343 which leads to an intensity

of

i =
|z−∞|+ z∞

N

=
|z−∞|+ z∞
n+ |z−∞|

= 0.676.

4.4.5 Numerical Solution

To conclude the discussion in this chapter, the solutions to the three differential equations

proposed in Section 4.2 can be approximated numerically, for small time steps dt, by the

iterations

xi+1 = xi − (βxiyi)dt

yi+1 = yi + (βxiyi − γyi)dt
zi+1 = zi + γyidt

with initial conditions at t = 0 of x0, y0 and z0 = 0, and i referring to the time t = idt where

dt = 0.1 and i = 1, 2, . . . , 10000.

The equations can be numerically iterated using the formulas above since in the limit

dt→ 0
xt+dt − xt

dt
= −βxtyt

and similarly for y and z. Therefore small dt, equal to 0.1 in this case, can be used to simulate

the equations numerically. These iterations were performed in R using the code

beta=0.01; gamma=0.01; rho=gamma/beta; x0=95; y0=5
dt=0.1
tt=c(0:10000)*dt
x=numeric(10001)
y=numeric(10001)
z=numeric(10001)
x[1]=x0
y[1]=100-x0
z[1]=0
for (i in 1:10000){
x[i+1]=x[i]-beta*x[i]*y[i]*dt
y[i+1]=y[i]+(beta*x[i]*y[i]-gamma*y[i])*dt
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Figure 4.9: Numerical solutions to the number of susceptibles, x, infectives, y, and removals,

z, for β = γ = 0.01, n = 100, y0=5.

z[i+1]=z[i]+gamma*y[i]*dt
}
plot(tt,z,type="l",xlab="t",ylab="",xlim=c(0,500),ylim=c(0,100))
# shows z --> 100 as t --> infinity
points(tt,x,type="l",lty=2)
points(tt,y,type="l",lty=3)

Figure 4.9 illustrates how, in this example, the number of susceptibles converges to zero

relatively quickly, and then the number of removals and infectives take a longer period of time

to converge to z∞ = 100 and y∞ = 0.

Figure 4.10 demonstrates how the number of susceptibles need not converge to zero. In

this case, the parameters take the values n = 10, y0 = 1, β = 0.05 and γ = 0.7, causing x(t) to

drop and converge to a value just below 8. Using the calculations at the end of Section 4.4.4,

it is found that x∞ = n− z∞ = 7.561. Here all three solutions converge to their limiting values

at roughly the same rate, in contrast to Figure 4.9.
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Figure 4.10: Numerical solutions to the number of susceptibles x(t), infectives y(t) and removals

z(t), for β = 0.05, γ = 0.7, n = 10, y0=1.
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Chapter 5

Introduction to Stochastic Modelling

As noted in Section 3.1, the spread of disease in large scale populations can be thought of

as non-random and modelled deterministically. However when considering smaller population

sizes, the statistical variation in the data becomes increasingly prevalent, and hence models

used to investigate smaller population sizes need to take this into account.

Stochastic and Markovian processes can be used to model disease spread in this context.

Variations of these models will be investigated in the following chapters, however this chapter

is concerned with establishing some key points of stochastic theory that will be required to

model epidemics in this way.

5.1 Stochastic processes

A stochastic process is a sequence of random variables which describe the evolution of some

quantity in time or space. More formally, a stochastic process X is a collection of random

variables X(t) for each t in some time set T . That is

X = {X(t), t ∈ T}.

Each X(t) describes the state of the process at time t, and the set of possible values that each

X(t) can take is called the state space S of the stochastic process X. In general, both the time

set T and the state space S can be discrete or continuous.

For a stochastic process at time t, the value of X(t) is known, since it has been observed.

However, the future values are yet to occur so are unknown random variables. These future

values may be influenced by the past and present values of the stochastic process.

For example, the number of susceptible members in an epidemic population can be thought

of as a stochastic process X. At time t, the number of susceptibles is observed to be X(t) with
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the future observations unknown as there is some probability that the disease will be transmitted

or not transmitted. Hence these future observations can be treated as random variables.

5.2 Poisson processes

A Poisson process is an example of a continuous time stochastic process. It is a counting process

which counts the number of events X(t) up to time t.

Formally, {X(t), t ≥ 0} is a Poisson process if

1. X(0) = 0 and X(s) ≤ X(t) for s ≤ t.

2. The process has independent and stationary increments, that is for non-overlapping in-

tervals [s, s+ h] and [t, t+ h], Xs+h −Xs and Xt+h −Xt are independent and identically

distributed.

3. Transitions occur one at a time, that is for small h

Pr(X(t+ h)−X(t) = 1) = λh+ o(h)

Pr(X(t+ h)−X(t) > 1) = o(h)

Pr(X(t+ h)−X(t) = 0) = 1− λh+ o(h)

where o(h) is a function of small order such that lim
h→0

o(h)

h
→ 0.

An alternative but equivalent definition, proved by Ross (1996, p231), replaces parts 2 and 3 of

the above definition with the condition that the number of events occurring in any time interval

of width h has a Poisson distribution with rate λh. That is

Pr(X(t+ h)−X(t) = x) =
(λh)xe−λh

x!
, x = 0, 1, 2, . . . .

Each increase in the value of the process can be though of as an arrival, or birth, and since

these events occur randomly, the times between these arrivals are also random. To investigate

these inter-arrival times, let Ti be the time from the (i−1)th to the ith observation. Considering

the time T1 between zero and the first observation gives

FT1(t) = Pr(T1 ≤ t)

= Pr(X(t) ≥ 1)

= 1− Pr(X(t) = 0)

= 1− (λt)0e−λt

0!

= 1− e−λt.
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Hence the probability density function of T1 is

fT1(t) =
d

dt
FT1(t) = λe−λt

for t ≥ 0. This is the density of the exponential distribution with rate λ. Therefore the time

between zero and the first observation is an exponential random variable with rate λ. Since

these disjoint increments are independent and stationary, it must also be the case that each Ti

is an independent exponential random variable with rate λ. Three independent realisations of

a Poisson process with rate λ = 1 are shown in Figure 5.1. This is done with the R code

T=rexp(10,1)
tt=c(0,T[1],T[1]+T[2],T[1]+T[2]+T[3],T[1]+T[2]+T[3]+T[4],
T[1]+T[2]+T[3]+T[4]+T[5],T[1]+T[2]+T[3]+T[4]+T[5]+T[6],
T[1]+T[2]+T[3]+T[4]+T[5]+T[6]+T[7],
T[1]+T[2]+T[3]+T[4]+T[5]+T[6]+T[7]+T[8],
T[1]+T[2]+T[3]+T[4]+T[5]+T[6]+T[7]+T[8]+T[9],
T[1]+T[2]+T[3]+T[4]+T[5]+T[6]+T[7]+T[8]+T[9]+T[10])
X=c(0,1,2,3,4,5,6,7,8,9,10)
plot(tt,X,type="s",xlab="Time t",ylab="X(t)")

In the top plot the time until the first observation T1 is 0.41, the middle plot has T1 = 0.26,

whereas in the bottom plot the value for T1 is 1.52. This highlights the randomness of the model.

The distribution of the time from zero until the nth observation can be found. Let Sn =

T1 + · · ·+ Tn, then

1− FSn(t) = Pr(T1 + · · ·+ Tn ≥ t)

= Pr(X(t) ≤ n).

This is the case because if the time until the nth observation is greater than or equal to t, then

at most n observations can have occurred at time t. Hence

1− FSn =
n−1∑
r=0

Pr(X(t) = r)

=
n−1∑
r=0

(λt)re−λt

r!
.
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Figure 5.1: Three realisations of a Poisson process with rate λ = 1.

Therefore

fSn(t) =
d

dt
FSn(t)

=
d

dt

(
1−

n−1∑
r=0

(λt)re−λt

r!

)

= −
n−1∑
r=0

(
rλ(λt)r−1e−λt

r!
− λ(λt)re−λt

r!

)
=
λntn−1e−λt

(n− 1)!
, t ≥ 0.

This is the density of a gamma distribution with parameters n and λ, and hence Sn is a gamma

distributed random variable with mean
n

λ
and variance

n

λ2
.

5.3 Markov processes

A stochastic process is said to be a Markov process when it has the Markov property. In contin-

uous time and discrete state space, Ross (1996, p231) defines a stochastic process {X(t), t ≥ 0}
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to be a Markov process if for all h, t, u ≥ 0 with u ≤ t and integers i, j, k,

Pr(X(t+ h) = j|X(t) = i,X(u) = k) = Pr(X(t+ h) = j|X(t) = i).

In other words, knowledge of the process up until time t is irrelevant, as long as the value

of the process at time t is known. A Poisson process is an example of this as it is just a

counting process; knowing how it has evolved up until time t will have no influence on the

future probabilities providing the value at time t is known.

In most epidemic models, it is assumed that the number of infectives at some future time

depends only on the present number of infective members at time t, and knowing the evolution

of infectives up until this time t does not change this. In this context disease spread can be

modelled by a Markov process.

The conditional probabilities Pr(X(t + s) = j|X(t) = i) are known as the transition

probabilities. A Markov process is said to be homogeneous when these transition probabilities

depend only on s; that is for s > 0

Pr(X(t+ h) = j|X(t) = i) = Pr(X(h) = j|X(0) = i).

When

Pr(X(t+ h) = i|X(t) = i) = 1,

then state i is said to be an absorbing state. Once state i is reached, the process stays there

with no chance of leaving.

5.3.1 Birth and death processes

A birth and death process is a special case of a continuous time Markov process, and builds on

some of the ideas developed for Poisson processes. Consider a continuous time Markov process

with discrete state space indexed by i = 0, 1, 2, . . . . In state i, births occur from a Poisson

distribution with rate λi and independently deaths occur as a Poisson distribution with rate µi

for each state i = 0, 1, 2, . . . . This process is called a birth and death process when the only

transitions possible from state i are to state i+1 with rate λi or transition to state i−1 at rate

µi. After a new birth or death has taken place, the process changes states and new transition

rates can apply. Also, µ0 = 0 and if the state space of the process has an upper limit n say,

then λn = 0. This is illustrated in Figure 5.2. The transition probabilities for birth or death

are then

Pr(X(t+ h) = i+ 1|X(t) = i) = λi + o(h)

Pr(X(t+ h) = i− 1|X(t) = i) = µi + o(h).
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Figure 5.2: A birth and death process with birth rates λi and death rates µi.

Note that since births occur independently of deaths, when in state i the time until the next

birth is an exponentially distributed random variable with rate λi and the time until next

death is an exponential distribution with rate µi. Furthermore, since births and deaths are

independent,

Pr(transition before time t) = Pr(death before t or birth before t)

= 1− Pr(no death before t and no birth before t)

= 1−
(
e−λit

) (
e−µit

)
= 1− e−(λi+µi)t

shows that the time until the next transition from state i is a exponential random variable with

rate λi + µi.

Setting µi = 0 and λi = λ for all i, gives the Poisson process considered in Section 5.2.

Taking µi = 0 for all i is called a pure birth process and λi = 0 for all i is called a pure death

process.

In the context of modelling the simple epidemic stochastically, susceptibles and infectives

make up the whole closed population. This means the state of one of the two random variables

denoting susceptible and infective members uniquely determines the whole system.
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Chapter 6

The Simple Stochastic Epidemic

6.1 Modelling the simple epidemic stochastically

In the simple stochastic model, much like the deterministic model in Chapter 3, infective and

susceptible members make up the closed population, with no removals. Once a population

member is infective they remain in that state.

Let number of susceptibles and infectives at time t be denoted by the discrete random

variables X(t) and Y (t) respectively and let the vector U(t) = (X(t), Y (t)). Here the initial

conditions are U(0) = (N, I) with I ≥ 1 andN ≥ 1, otherwise the epidemic would not begin and

there would be no need for further investigation. The closed population constraint imposes the

result X(t) +Y (t) = N + I for all t. This is a change of notation from the deterministic model,

where the population had total size n, however for the stochastic model it is more convenient

to initialise the population into two explicit classes, N and I. Once more homogeneous mixing

between all population members is assumed. Note that here the states i, j must be nonnegative

as they are representing the size of the susceptible and infective population classes respectively.

Now {U(t), t ≥ 0} can be viewed as a multivariate stochastic process in continuous time,

indexed by the state space {(i, j) : i, j ∈ Z+, 0 ≤ i ≤ N, I ≤ j ≤ N + I}. In the simple

epidemic, i, denoting the number of susceptibles, decreases from N to 0 through time as more

susceptible members become infective. This causes j to increase from I, the initial number of

infective members, to contain the whole population, N + I. This model can be investigated

using the tools developed in Chapter 5.
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6.2 Modelling the epidemic as a Poisson process

For a very simplistic stochastic model, suppose it could be assumed that the probability at which

members transition from susceptible to infective is independent of the number of infectives and

susceptibles. If this is the case, then susceptible members become infected at some constant

rate λ > 0. This is not usually assumed to be the case in an epidemic, however viewing the

epidemic as a Poisson process provides a good place to start when beginning to build the

stochastic epidemic model.

Due to the closed population constraint, the number of susceptibles, or alternatively the

number of infectives, uniquely determines the whole system at time t. With this construction,

the number of new infectives Y ∗(t) is a Poisson process. The number of new infectives is

defined here as the number of susceptibles that become infective, in effect not counting the

initial number of infectives I. It is to satisfy the definition of a Poisson process in Section

5.2, that Y ∗(0) = 0. This system has an absorbing state Y ∗(t) = N , as once all the initial

N susceptible population members have become infected, the epidemic is over, and no more

counting can be done.

Then in a small time period h, the only possible events are one susceptible member

transitions into the infective state, which occurs with probability λh + o(h), or there are no

transitions, which occurs with probability 1−λh+o(h). Formally these transition probabilities

are

Pr(U(t+ h) = (i− 1, j + 1)|U(t) = (i, j)) = Pr(Y ∗(t+ h) = j + 1|Y ∗(t) = j) = λh+ o(h)

Pr(U(t+ h) = (i, j)|U(t) = (i, j)) = Pr(Y ∗(t+ h) = j|Y ∗(t) = j) = 1− λ+ o(h)

for I ≤ j ≤ N + I, i = N + I− j and absorbing state Y ∗(t) = N . This means the probability of

a new infective occurring in the period (t, t+ h) is λh when the total number of new infectives

is between 0 and N , and 0 otherwise. Therefore, from Section 5.2, the time between new

infectives occurring is an exponential distribution with parameter λ for 0 ≤ Y ∗(t) ≤ N .

6.2.1 Time to full infection

Also from Section 5.2, the time to full infection is a gamma (N, λ) random variable, meaning

the mean time to full infection would be
N

λ
.

For example consider a family with one infective member and three susceptible members,

with constant infection rate independent of the number of infectives and susceptibles of λ = 0.5

per unit time. The time to full infection is expected to be
3

0.5
= 6.
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In comparison, the deterministic time to full infection in Section 3.3.2 with equivalent

parameters, a population size n = 4, y0 = 1 and infection rate parameter β = 0.5 gives a time

to full infection of

T =
1

0.5× 4
ln

(
2(4− 1

2
)(4− 1)

1

)
= 1.52.

Furthermore for a population of size 100 with I = 5 and N = 95, taking λ = 0.01 gives the

same initial parameters as discussed in Section 3.5. The Poisson process time to full infection

for these parameters is
95

0.01
= 9500.

This is a huge difference from the deterministic time to full infection, derived in Section 3.5

as 8.24. This is to be expected as in the deterministic model the transitions depend on which

state the system is currently in, whereas when modelling the system as a Poisson process the

probability of a transition at each state is the same. This emphasises the fact that the modelling

of an epidemic as a Poisson process with constant infection rate independent of the number

of susceptibles and infectives is not an adequate model. This simple model is too basic to

take state dependence into account, so the model needs to be refined to give a more accurate

description of what is going on.

6.3 Modelling the epidemic as a Markov process

To improve the model suggested in Section 6.2, the infection rate parameter can be given de-

pendence on the number of susceptibles and infectives at that time λij. To give the simplest

dependence on the states, λij is set to be proportional to the number of infectives and suscep-

tibles by taking λij = λij. Note that this is different from the deterministic setting, where the

infection rate parameter was denoted by β instead of λ.

By returning to the notation of U(t) = (X(t), Y (t)) for a population of size N + I, with

U(0) = (N, I), the only non zero transition probabilities in some small time h are suggested

by Daley and Gani (1999, p57) to be

Pr(U(t+ h) = (i− 1, j + 1)|U(t) = (i, j)) = λhij + o(h)

Pr(U(t+ h) = (i, j)|U(t) = (i, j)) = 1− λhij + o(h)
(6.1)

with absorbing state U(t) = (0, N + I). Again, since only susceptibles and infectives make up

the whole closed population, the state of one of the two random variables uniquely determines

the whole system as U(t) = (X(t), N + I − X(t)) = (N + I − Y (t), Y (t)). Therefore the

transition probability

Pr(U(t+ h) = (i− 1, j + 1)|U(t) = (i, j)) = λhij + o(h)
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can be considered as

Pr(Y (t+ h) = j + 1|Y (t) = j) = λj(N + I − j)h+ o(h)

and similarly

Pr(U(t+ h) = (i, j)|U(t) = (i, j)) = 1− λhij + o(h)

becomes

Pr(Y (t+ h) = j|Y (t) = j) = 1− λj(N + I − j)h+ o(h).

Therefore Y (t) can be thought of as a pure birth process because the number of infectives

can only increase and X(t) can be thought of as a pure death process, since the number of

susceptibles cannot increase.

6.4 Time to full infection

By taking Y(t) as a pure birth process with rate λj = λj(N + I − j), the time spent in state j,

Tj, is an exponential distribution with rate λj(N + I − j). Therefore the expected time spent

in state j is E(Tj) =
1

λj(N + I − j)
. By combining all these expectations, the expected time

to full infection is

T = TI + · · ·+ TN+I =
N+I∑
j=I

1

λj(N + I − j)
.

6.4.1 Numerical example of finding the time to full infection

For example, consider the system determined by U(0) = (3, 1). Starting with one initial

infective j = I = 1, the time T1 until the transition to two infectives is an exponentially

distributed random variable with rate λ1 = λ(3 + 1 − 1) = 3λ. Similarly the time T2 between

the first and second infections, during which there are two infectives and two susceptibles is

an exponentially distributed random variable with parameter 4λ. Finally the same reasoning

gives T3 ∼ exp(3λ).

The expected time to full infection is then E(T1 +T2 +T3), since after the third transition

from susceptible to infective the whole population will be infected. Since these times are

independent, for T1 ∼ exp(3λ), T2 ∼ exp(4λ) and T3 ∼ exp(3λ), the expected time to full

infection is found to be

E(T1 + T2 + T3) =
1

3λ
+

1

4λ
+

1

3λ
=

11

12λ
. (6.2)
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6.4.2 Finding the density for the numerical example

In addition to just the expectation, the probability density function of the random variable

T = T1 + T2 + T3 can be obtained. To do this, firstly consider the time T1 until the first

transition from susceptible to infective. Since T1 is exponentially distributed with rate 3λ it

has cumulative distribution function

FT1(t) = Pr(T1 ≤ t) = 1− e−3λt.

Then by considering all possible transition times u for the first transition,

FT1+T2(t) = Pr(T1 + T2 ≤ t) =

∫ t

0

Pr(T1 + T2 ≤ t|T1 = u)fT1(u)du

=

∫ t

0

Pr(T2 ≤ t− u)fT1(u)du

=

∫ t

0

(1− e−4λ(t−u))3λe−3λudu

=

∫ t

0

3λe−3λu − 3λeλu · e−4λtdu

=
[
−e−3λu

]u=t

u=0
− e−4λt

[
3eλu

]u=t

u=0

= −e−3λt + 1− 3e−3λt + 3e−4λt

= 1− 4e−3λt + 3e−4λt.

Therefore the probability density of T1 + T2 is

fT1+T2(t) =
d

dt
FT1+T2(t)

= 12λe−3λt − 12λe−4λt, t > 0.

Repeating this procedure including T3 will lead to the probability density of T = T1 +

T2 + T3. Firstly the cumulative distribution function FT (t) is

Pr(T ≤ t) =

∫ t

0

Pr(T1 + T2 + T3 ≤ t|T1 + T2 = u)fT1+T2(u)du

=

∫ t

0

(1− e−3λ(t−u))(12λe−3λu − 12λe−4λu)du

=

∫ t

0

12λe−3λu − 12λe−4λu − 12λe−3λt + 12λe−3λte−λudu

=
[
−4e−3λu + 3e−4λu − 12λue−3λt − 12e−3λte−λu

]u=t

u=0

= −4e−3λt + 4 + 3e−4λt − 3− 12λte−3λt − 12e−4λt + 12e−3λt

= 8e−3λt − 9e−4λt − 12λte−3λt + 1.
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Therefore the probability density function of T is found to be

fT (t) =
d

dt
FT (t) = −24λe−3λt + 36λe−4λt − 12e−3λt + 36λte−3λt

= 36λe−4λt − 36λe−3λt + 36λ2te−3λt, t > 0.

Noting that the time t could possibly take any value greater than zero, the expected time

to full infection for this example can be calculated as

E(T ) =

∫ ∞
0

tfT (t)dt

=

∫ ∞
0

(
36λte−4λt − 36λte−3λt + 36λ2t2e−3λt

)
dt.

After integrating each respective term by parts this becomes

ET (t) = −4

λ
+

9

4λ
+

8

3λ
=

11

12λ

which agrees with equation (6.2).

Plots of the densities of fT1(t), fT1+T2(t) and fT (t) with λ = 0.5 are shown in Figure

6.1. The density fT1(t) looks like an exponential distribution as expected. The subsequent

densities illustrate the logical fact that each time another observation is included, the expected

value increases as previous events have to be observed first. This is illustrated by more of the

probability density under each of the successive density lines shifting to later times.

6.4.3 Comparison of times to full infection

For the example discussed in Section 6.2.1 with one initial infective and three initial susceptibles,

the stochastic model gives the time to full infection to be
11

12× 0.5
= 1.83. This is much closer

to the 1.52 time units to full infection predicted by the deterministic model than the 6.00

predicted from the Poisson model. This seems to reinforce the suggestion that forcing the

infection rate to have no dependence on the number of susceptibles and infectives makes a big

difference to analysis of an epidemic.

The difference between the time to full infection for the three models with three initial

susceptibles and one initial infective across different infection rate parameter values is illustrated

in Figure 6.2. Here, the time to full infection of all three models diverges to infinity as the

infection rate parameter approaches zero value, and the time to full infection of all three models

converges to zero for large infection rate parameter values. However, in between these two

values, the stochastic and deterministic models are much better matched than the Poisson

model, again suggesting that the stochastic model is more appropriate than the Poisson model.
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Figure 6.1: Plots of the densities of fT1(t), fT1+T2(t) and fT (t) with λ = 0.5.

Figure 6.2: Times to full infection plotted against the value of infection rate parameter λ for

I = 1 and N = 3.
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By using a similar method as the one used in this section, the density for the total of

any number of transition times can be found, however this would be very labour intensive, so a

slightly different way of approaching the model in equation (6.1) is required. This will be done

by using the Laplace transform, suggested by Daley and Gani (1999, p59) and Bailey (1957,

p39) and produced in more detail in the following subsection.

6.5 Deriving Kolmogorov equations for the epidemic

Writing equation (6.1) in terms of X(t) gives

Pr(X(t+ h) = i− 1|X(t) = i) = λi(N + I − i)h+ o(h)

Pr(X(t+ h) = i|X(t) = i) = 1− λi(N + I − i)h+ o(h)

with an absorbing state at X(t) = 0, because in the simple epidemic once all susceptibles are

infected, the epidemic is over.

Denoting pi(t) = Pr(X(t) = i|X(0) = N), consider all possible transitions for state i,

where 0 < i < N over a small time period h. To be in state i at time t + h the system could

be in state i + 1 at time t, and transition down in the short time period h, which happens

with probability λ(i + 1)(N + I − i − 1)h + o(h). Alternatively, the system could be in state

i at time t, and remain in that state through time period h, which happens with probability

1− λi(N + I − i)h+ o(h). For small enough h, and since the number of susceptibles can only

remain the same or decrease, these are the only two transitions that can occur. This leads to

the equation

pi(t+ h) = pi+1(t) [λ(i+ 1)(N + I − i− 1)h+ o(h)]

+ pi(t) [1− λi(N + I − i)h+ o(h)] .

Rearranging and dividing through by h gives

pi(t+ h)− pi(t)
h

= λ(i+ 1)(N + I − i− 1)pi+1(t)− λi(N + I − i)pi(t) +
o(h)

h

and in the limit as h→ 0,

dpi(t)

dt
= λ(i+ 1)(N + I − i− 1)pi+1(t)− λi(N + I − i)pi(t) (6.3)

for i = 1, . . . , N − 1.

Upon closer inspection, equation (6.3) also holds for the case i = 0. Since i = 0, the

negative term in equation (6.3) disappears, leaving

dp0(t)

dt
= λ(N + I − 1)p1(t). (6.4)
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Finally, by defining pN+1(t) = 0 for all t so that it is impossible to have more than N

susceptibles infected over the course of the epidemic, equation (6.3) also holds for the case

i = N , giving
dpN(t)

dt
= −λNIpN(t). (6.5)

Therefore by defining pN+1(t) = 0 for all t, equation (6.3) holds for i = 0, . . . , N . In the general

case, these kind of equations relating the time differential of the state probabilities to the

transition rates and the probabilities themselves are called the forward Kolmogorov equtions.

Equations (6.3), (6.4) and (6.5) are an example of the forward Kolmogorov equations for the

simple epidemic.

Direct solving of these equations is difficult, however Bailey (1957, p39) outlines how the

use of the Laplace transform can be used to simplify the solution, which is given in more detail

below.

6.6 The Laplace transform

The Laplace transform is an integral transform that can be used to obtain solutions to some

equations in a simpler way than direct computation, explained further by Braun (1983, p223).

The Laplacian operator L acting on the probability pi(t), which is continuous between 0

and 1, gives the Laplace transform L[pi(t)] = p̂i(θ) which is defined to be

L[pi(t)] = p̂i(θ) =

∫ ∞
0

e−θtpi(t)dt (6.6)

with 0 ≤ i ≤ N and Re(θ) > 0; further details about Laplace transforms are included in

Rainville (1963) and Davies (1978).

Equations (6.3), (6.4) and (6.5) can be transformed into the θ domain by equation (6.6),

then solved and converted back into the t domain by inverting the Laplace transform. To

conclude this subsection, two important transforms and one important transform property will

be proved which will be required later.
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6.6.1 Properties of the Laplace transform

For constant a, if p(t) = eat, then

p̂(θ) =

∫ ∞
0

eate−θtdt

=

[
− 1

θ − a
e−(θ−a)t

]∞
0

=
1

θ − a
. (6.7)

If p(t) = teat, then

p̂(θ) =

∫ ∞
0

te−(θ−a)tdt.

Integrating by parts gives

p̂(θ) =

[
−t
θ − a

e−(θ−a)t

]∞
0

+

∫ ∞
0

1

θ − a
e−(θ−a)tdt

=

[
− 1

(θ − a)2
e−(θ−a)t

]∞
0

=
1

(θ − a)2
. (6.8)

Finally, the Laplace transform has the linearity property. For functions f1(t), f2(t) and con-

stants a and b,

L [af1(t) + bf2(t)] =

∫ ∞
0

(af1(t) + bf2(t)) e−θtdt

= a

∫ ∞
0

f1(t)e−θtdt+ b

∫ ∞
0

f2(t)e−θtdt

= af̂1(t) + bf̂2(t). (6.9)

6.6.2 Applying the Laplace transform to the model

Applying the Laplace transform to equation (6.4) gives∫ ∞
0

e−θt
dp0(t)

dt
dt =

∫ ∞
0

λ (N + I − 1) p1(t)dt.

Integrating by parts gives[
−p0(t)e−θt

]∞
0

+ θ

∫ ∞
0

p0(t)e−θtdt = λ (N + I − 1) p̂1(t) (6.10)
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and because the system starts with N susceptibles, pN(0) = 1, this means p0(0) = 0 which

causes the square bracket term to be zero at t = 0. The exponential to a negative power causes

the square bracket term to be zero as t→∞. Equation (6.10) then becomes

θp̂0(t) = λ (N + I − 1) p̂1(θ).

Hence

p̂0(t) =
λ (N + I − 1)

θ
p̂1(θ).

Applying the same method to equations (6.5) and (6.3) gives the results

p̂N(t) =
1

θ + λNI

and

p̂i(t) =
λ(i+ 1)(N + I − i− 1)

θ + λi(N + I − i)
p̂i+1(θ)

for 1 ≤ i ≤ N − 1.

This set of equations can be solved recursively from p̂N(θ) to give

p̂i(θ) =
N−1∏
j=i

λ(j + 1)(N + I − j − 1)

θ + λj(N + I − j)
· 1

θ + λNI
(6.11)

for 0 ≤ i ≤ N − 1. This is the corrected form of the incorrect formula given in Daley and Gani

(1999, p60). This method can be used for any number of susceptibles and infectives. However

inverting each Laplace transform for a large population will again be labour intensive.

6.6.3 Applying the Laplace transform to an example

Consider again the example with N = 3, I = 1 and λ = 0.5. Using equation (6.11), the Laplace

transforms of the probabilities are

p̂3(θ) =
1

θ + 1.5

p̂2(θ) =
1.5

(θ + 1.5)(θ + 2)

p̂1(θ) =
3

(θ + 1.5)2(θ + 2)

p̂0(θ) =
4.5

θ(θ + 1.5)2(θ + 2)
.
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These transforms can now be inverted using partial fractions and the three facts proved

in Section 6.6.1 to give

p3(t) = e−1.5t (6.12)

p2(t) = 3
(
e−1.5t − e−2t

)
(6.13)

p1(t) = 12e−2t − 12e−1.5t + 6te−1.5t (6.14)

p0(t) = 1− 9e−2t + 8e−1.5t − 6te−1.5t (6.15)

for all t ≥ 0. The method is shown below for the case of p1(t), and the working for the other

three probabilities follows the same approach.

Firstly, using partial fractions

p̂1(θ) =
3

(θ + 1.5)2(θ + 2)
=

A

θ + 2
+

B

θ + 1.5
+

C

(θ + 1.5)2
,

where A,B and C are constants to be determined. Multiplying through by (θ + 1.5)2(θ + 2)

leads to

3 = A(θ + 1.5)2 +B(θ + 2)(θ + 1.5) + C(θ + 2).

Now, substituting θ = −1.5 gives C = 6, θ = −2 gives A = 12 and θ = −1 gives B = −12.

Hence

p̂1(θ) =
3

(θ + 1.5)2(θ + 2)
=

12

θ + 2
− 12

θ + 1.5
+

6

(θ + 1.5)2
.

Finally, using equations (6.7), (6.8) and (6.9) to invert the Laplace transforms gives

p1(t) = 12e−2t − 12e−1.5t + 6te−1.5t

as required.

The four probabilities in equations (6.12) to (6.15) are plotted against time t in Figure

6.3.

By looking at equations (6.12) to (6.15) and as illustrated by Figure 6.3, as t → ∞,

p0(t) → 1 whilst the other three probabilities tend to zero. This means that for large t, the

probability that there are no susceptible members left tends to unity. This reinforces the result

that in the simple epidemic, all susceptible members become infected.

Furthermore, for small t, the probability density of p3(t) is the largest, implying that at

this time it is most likely that there has been no new infections. Following this, both p2(t) and

p1(t) have very short periods when they take the largest value respectively, meaning that one

and two new infections are most likely at these times respectively. The fact that p2(t) spends

the least time being most likely is because when there are two susceptibles remaining, there
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Figure 6.3: Probabilities p0(t), p1(t), p2(t), p3(t) plotted against t, with N = 3, I = 1 and

λ = 0.5.

are two infectives, so contact between infectives and susceptibles is most likely to occur. This

is similar to the deterministic case derived in equation (3.8), which shows the infection rate

is quickest when the number of infectives is half of the total population. Finally, once p0(t)

becomes largest it will remain so, as once full infection is most likely, passing time will only

make it more likely.

6.7 Probability generating functions

An alternative method to solving the differential equations using the Laplace transform, and

one that returns an important final result, is to consider the probability generating function of

the probabilities given by equation (6.3).
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6.7.1 Properties of probability generation functions

The probability generating function G(z, t) of a Markov chain X(t) with N + 1 possible states

is defined by Iosifescu (1980, p34) to be

G(z, t) = E
(
zX(t)

)
=

N∑
i=0

Pr(X(t) = i|X(0) = N)zi

=
N∑
i=0

pi(t)z
i

where the series is absolutely convergent for |z| ≤ 1. Furthermore, for 1 ≤ r ≤ N , the

probability generating function has the important property that

lim
z→1−

∂rG(z, t)

∂zr
= E(X(X − 1) . . . (X − r + 1)).

This is because, assuming the order of the sum and differentiation can be changed,

lim
z→1−

∂rG(z, t)

∂zr
= lim

z→1−

∂r

∂zr

N∑
i=0

pi(t)z
i

= lim
z→1−

N∑
i=0

pi(t)
drzi

dzr

= lim
z→1−

N∑
i=0

pi(t)i(i− 1) . . . (i− r + 1)zi−r

=
N∑
i=0

pi(t)i(i− 1) . . . (i− r + 1)

= E(X(t)(X(t)− 1) . . . (X(t)− r + 1)).

Note also that

∂G(z, t)

∂t
=

N∑
i=0

dpi(t)

dt
zi, (6.16)

∂G(z, t)

∂z
=

N∑
i=1

ipi(t)z
i−1 =

N∑
i=0

ipi(t)z
i−1 (6.17)

and

∂2G(z, t)

∂z2
=

N∑
i=2

i(i− 1)pi(t)z
i−2 =

N∑
i=0

i(i− 1)pi(t)z
i−2. (6.18)
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6.7.2 Application to the state probabilities

Substituting equation (6.3) in for
dpi(t)

dt
in equation (6.16) gives

∂G(z, t)

∂t
=

N∑
i=0

dpi(t)

dt
zi

=
N∑
i=0

λzi
[
−i(N + I)pi(t) + i2pi(t) + (i+ 1)(N + I)pi+1(t)− (i+ 1)2pi+1(t)

]
=

N∑
i=0

λzi
[
−i(N + I)pi(t) + i2pi(t)

]
+

N−1∑
i=0

λzi
[
(i+ 1)(N + I)pi+1(t)− (i+ 1)2pi+1(t)

]
as recalling that pN+1(t) = 0 means the second sum is zero when i = N . Writing j = i in the

first sum, and j = i+ 1 in the second sum leads to

∂G(z, t)

∂t
=

N∑
j=0

λzj
[
−j(N + I)pj(t) + j2pj(t)

]
+

N∑
j=1

λzj−1
[
j(N + I)pj(t)− j2pj(t)

]
.

By writing j2 = j(j − 1) + j and because the second sum would be zero when j = 0, the j = 0

term can be included in the sum, giving

∂G(z, t)

∂t
=

N∑
j=0

λzj [−j(N + I)pj(t) + j(j − 1)pj(t) + jpj(t)]

+
N∑
j=0

λzj−1 [j(N + I)pj(t)− j(j − 1)pj(t)− jpj(t)]

=
N∑
j=0

λzj [−j(N + I − 1)pj(t) + j(j − 1)pj(t)] + λzj−1 [j(N + I − 1)pj(t)− j(j − 1)pj(t)] .

Taking a single factor of z into the brackets in the first sum gives

∂G(z, t)

∂t
=

N∑
j=0

λzj−1 [−zj(N + I − 1)pj(t) + zj(j − 1)pj(t) + j(N + I − 1)pj(t)− j(j − 1)pj(t)]

=
N∑
j=0

λzj−1 [(z − 1)j(j − 1)pj(t)]− zj−1 [(z − 1)j(N + I − 1)pj(t)]

= λz(z − 1)
N∑
j=0

zj−2j(j − 1)pj(t)− λ(z − 1)
N∑
j=0

zj−1j(N + I − 1)pj(t)
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and by recalling equations (6.17) and (6.18) this is

∂G(z, t)

∂t
= λz(z − 1)

∂2G(z, t)

∂z2
− λ(z − 1)

∂G(z, t)

∂z
.

Now, from the previous subsection it is known that lim
z→1−

∂G(z, t)

∂z
= E [X(t)] and lim

z→1−

∂2G(z, t)

∂z2
=

E [X(t)(X(t)− 1)]. To obtain an expectation term on the left hand side, the whole equation

must be differentiated by z once more to give

∂

∂z

(
∂G(z, t)

∂t

)
=
∂3G(z, t)

∂3z
λz(z − 1) +

∂2G(z, t)

∂2z
λ(2z − 1)− ∂G(z, t)

∂z
λ(N + I − 1)

and assuming the order of differentiation can be changed, taking the limit z → 1− gives

dE[X(t)]

dt
= λE[X(t)(X(t)− 1)]− λ(N + I − 1)E[X(t)]

= λE[X(t)2]− λE[X(t)]2 + λE[X(t)]2 − λE[X(t)]− (N + I − 1)λE[X(t)]

= λV ar[X(t)]− λE[X(t)](N + I − E[X(t)]). (6.19)

This is analogous to the simple deterministic epidemic curve for population size n and

x(t) susceptibles at time t given by equation (3.2) to be

dx

dt
= −βx(t)(n− x(t))

with the addition of the variance caused by the randomness in the stochastic model. Here

X(0) = x(0) and N + I = n. Therefore when the variance of X(t) is small relative to

E[X(t)](N+I−E[X(t)]) the deterministic and stochastic epidemic curves are well matched for

the same parameter values. This can be deduced because if V ar(X(t)) → 0, then E[X(t)] →
x(t), causing the stochastic epidemic to tend to the deterministic case.

To investigate further, the variance of X(t) multiplied by λ can be written as

λV ar[X(t)] = λE[X(t)2]− λE[X(t)]2

= λ

N∑
i=0

pi(t)i
2 − λ

(
N∑
i=0

pi(t)i

)2

,

whilst

−λE[X(t)](N + I − E[X(t)]) = −λ(N + I)
N∑
i=0

pi(t)i+ λ

(
N∑
i=0

pi(t)i

)2

.
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Therefore equation (6.19) becomes

dE[X(t)]

dt
= λ

N∑
i=0

pi(t)i
2 − λ

N∑
i=0

pi(t)i(N + I). (6.20)

Here the first summation in equation (6.20) is the contribution of the λV ar[X(t)] term from

equation (6.19) and the second term is the contribution of −λE[X(t)](N + I − E[X(t)]) from

equation (6.19).

Now, since i < N + I for all i,
N∑
i=0

pi(t)i(N + I) is always greater than
N∑
i=0

pi(t)i
2. Fur-

thermore, when the population N + I is large,

λ

N∑
i=0

pi(t)i
2 � λ

N∑
i=0

pi(t)i(N + I)

so that the variance of X(t) is small compared to the E[X(t)](N + I − E[X(t)]) term. Hence

for large populations, the stochastic and deterministic models are well matched. However, for

short term epidemics there is no such guarantee as the randomness of the stochastic model will

have more of an effect.

6.8 Numerical solution

To illustrate how this epidemic behaves, realisations of equations (6.1) can be simulated nu-

merically by recalling that susceptibles transitioning to infective can be modelled by a Poisson

process with rate λX(t)(N + I −X(t)). This is done with the R code below

#setting up the constants
N=3; lambda=0.5; tt=0
#initial value
x=N
#initialising counters
tevent=numeric(0)
while(x>0){
pxy=lambda*x*(N-x+1)
u=rexp(1,pxy)
tt=tt+u
x=x-1
tevent=c(tevent,tt)
}

#plotting the evolution
plot(0,0,type="n",xlim=c(0,tt),ylim=c(0,4),
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xlab="Time t",ylab="Number of susceptibles")
#set n as the length of tevent and initialising the susceptibles to N
n=length(tevent)
xx=N
#drawing the first horizontal line
lines(c(0,tevent[1]),c(xx,xx),lty=1)
for(i in 1:n){
#drawing vertical lines
lines(c(tevent[i],tevent[i]),c(xx,xx-1),lty=3); xx=xx-1
if(i!=n){
#drawing horizontal lines providing i is not equal to n
lines(c(tevent[i],tevent[i+1]),c(xx,xx),lty=1)
}
}

#setting up 1000 repeats of the system to estimate the mean and end time
tend=numeric(1000)
xend=numeric(1000)

for(isim in 1:1000){
x=N; tt=0
while((x>0)){
pxy=lambda*x*(N-x+1)
u=rexp(1,pxy)
tt=tt+u
x=x-1
}
#store the end time in tend and the final number of susceptibles in xend
tend[isim]=tt
xend[isim]=x
}
max(xend)
[1] 0
min(xend)
[1] 0
max(tend)
[1] 9.956497
min(tend)
[1] 0.1413819
mean(tend)
[1] 1.827053

This produces the plot in Figure 6.4 of the simple stochastic epidemic in the case N = 3,

I = 1 and λ = 0.5.

The fact that the maximum and minimum value of xend is 0 once more confirms that, as

shown for the simple deterministic epidemic, all susceptibles are infected during the course of
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Figure 6.4: One realisation of the simple stochastic epidemic over time with λ = 0.5, N = 3

and I = 1.

the epidemic. Furthermore, the mean of the 1000 simulated end times of the epidemic, 1.83,

is the same to two decimal places as the end time predicted in Figure 6.4, and close to the

deterministic prediction of 1.52.

In addition, Figure 6.5 shows four realisations of the infective deterministic curve, as

found in Section 3.3, and the stochastic infective curve for N = 95 initial susceptibles, I = 5

initial infectives, and an infection rate parameter of 0.01. This shows that for larger population

sizes, the two models are fairly well matched.

Figure 6.6 shows four realisations of the deterministic and stochastic models with again

λ = β = 0.01, but now there is only a fifth of the population, so I = 1, N = 19. Note that

because there is no randomness in the deterministic model, the deterministic curve is uniquely

determined by the initial parameters, meaning the deterministic curve for each of the four plots

is identical.

Comparing Figures 6.5 and 6.6 seems to suggest that the deterministic and stochastic

models agree relatively more strongly for larger population sizes, and that the probabilistic

element of the stochastic model matters more in a smaller population. This is as expected from

the result derived in Section 6.7.2

69



Figure 6.5: Determinstic and stochastic models for the number of infectives with N = 95, I = 5

and λ = β = 0.01.
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Figure 6.6: Determinstic and stochastic models for the number of infectives with N = 19, I = 1

and λ = β = 0.01.
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Chapter 7

The General Stochastic Epidemic

7.1 Modelling the general epidemic stochastically

The general stochastic epidemic is the natural extension of the simple case considered in Chapter

6 obtained by including a class of removals Z, where Z(t) denotes the number of removals at

time t. Analogously to Chapter 4, the rate at which each population member can enter the

removal class from the class of infectives is modelled by a Poisson process with rate γ, but once

in the removal class a member cannot leave. Homogeneous mixing of all population members

is also again assumed.

The population is once more assumed to be closed, and since there cannot be any removals

before the epidemic has begun it must be the case that Z(0) = 0. This means for an epidemic

with N initial susceptibles and I initial infectives,

X(t) + Y (t) + Z(t) = N + I

for all t.

Due to this closed population constraint the state of the infectives and susceptibles

uniquely determines the system, as then Z(t) = N + I − X(t) − Y (t). Therefore the bi-

variate Markov process U(t) defined in Section 6.1 is enough to describe the behaviour of the

general epidemic system.

By considering a small time period h, the transition probabilities can be written as

Pr(U(t+ h) = (i− 1, j + 1)|U(t) = (i, j)) = λijh+ o(h)

Pr(U(t+ h) = (i, j − 1)|U(t) = (i, j)) = γjh+ o(h)

Pr(U(t+ h) = (i, j)|U(t) = (i, j)) = 1− λijh− γjh+ o(h)

where λ is the stochastic pairwise infection rate parameter and 0 ≤ i + j ≤ N + I, 0 ≤ i ≤ N

and 0 ≤ j ≤ N + I.
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7.2 Investigating the general stochastic epidemic

Following the method of Daley and Gani (1999, p66), by writing

pij(t) = Pr(U(t) = (i, j)|U(0) = (N, I))

the forward Kolmogorov equations can be derived in a similar way to Section 6.5. Considering

all possible transitions to be in state (i, j) after a short time period h, for 0 ≤ i + j ≤ N + I,

0 ≤ i ≤ N − 1 and 1 ≤ j ≤ N + I − 1, then

pij(t+ h) = pi+1,j−1(t)λ(i+ 1)(j − 1)h+ pi,j+1(t)γ(j + 1)h+ pij(t)(1− λijh− γjh) + o(h).

After rearrangement and taking the limit h→ 0, this becomes

dpij(t)

dt
= λ(i+ 1)(j − 1)pi+1,j−1(t) + γ(j + 1)pi,j+1(t)− j(iλ+ γ)pij(t) (7.1)

with pNI(0) = 1. Defining pij(t) = 0 for all t whenever i > N , j < 0 or j > N + I causes

equation (7.1) to also hold when i = N , j = 0 and j = N + I.

Also note that, by recalling the general deterministic epidemic, it may not be the case

that all susceptibles become infected. Since there is an extra class of removals all states may

not be visited by this system, unlike the case of the simple stochastic epidemic.

The method of Laplace transforms from the previous chapter could be employed to find

a general recursive solution. However, because the system being considered is now a bivariate

Markov chain, it becomes extemely complicated for any population size of interest. Alterna-

tively a less laborious, however still complex method to solve this system is proposed by Gani

(1967) which involves the use of Laplace transforms, bivariate probability generating func-

tions and matrix manipulation. In this report these equations will be simulated numerically

in Section 7.4. Before this, the link between the general deterministic and stochastic models,

analogous to the previous chapter, will be derived.

7.3 Probability generating functions

To find the corresponding link between the general stochastic and deterministic epidemics, an

extension of the results proved in Section 6.7.1 is required.

7.3.1 Bivariate probability generating functions

Two random variables X(t) and Y (t), taking states indexed by i and j respectively, constrained

by 0 ≤ i + j ≤ N + I, 0 ≤ i ≤ N and 0 ≤ j ≤ N + I, have a bivariate probability generating
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function G(z, w; t) defined as

G(z, w; t) = E
(
zX(t)wY (t)

)
=

N∑
i=0

N+I−i∑
j=0

pij(t)z
iwj.

Investigating this probability generating function leads to a similar set of results proved in

Section 6.7.1.

Firstly, under partial differentiation with respect to z,

∂G(z, w; t)

∂z
=

N∑
i=0

N+I−i∑
j=0

pij(t)iz
i−1wj.

Now in the double limit z → 1−, w → 1− this becomes

lim
z→1−

lim
w→1−

∂G(z, w; t)

∂z
=

N∑
i=0

N+I−i∑
j=0

pij(t)i

which is the expectation of X(t), hence

lim
z→1−

lim
w→1−

∂G(z, w; t)

∂z
= E[X(t)]. (7.2)

Partial differentiation with respect to w using the exact same method leads to the same result

for Y (t),

lim
z→1−

lim
w→1−

∂G(z, w; t)

∂w
= E[Y (t)]. (7.3)

Additionally, differentiating with respect to both w and z and taking limits leads to,

lim
z→1−

lim
w→1−

∂2G(z, w; t)

∂z∂w
= lim

z→1−
lim
w→1−

N∑
i=0

N+I−i∑
j=0

pij(t)ijz
i−1wj−1

=
N∑
i=0

N+I−i∑
j=0

pij(t)ij

= E[X(t)Y (t)]. (7.4)
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7.3.2 Application to the general epidemic

These results can now be applied to the general epidemic Kolmogorov equation given by equa-

tion (7.1). Here

∂G(z, w; t)

∂t
=

N∑
i=0

N+I−i∑
j=0

dpij
dt

(t)ziwj

=
N∑
i=0

N+I−i∑
j=0

ziwjλ(i+ 1)(j − 1)pi+1,j−1(t) +
N∑
i=0

N+I−i∑
j=0

ziwjγ(j + 1)pi,j+1(t)

−
N∑
i=0

N+I−i∑
j=0

ziwjj(iλ+ γ)pij(t).

Defining k = i + 1, l = j − 1 in the first sum, k = i, l = j + 1 in the second sum, and k = i,

l = j in the third sum gives

∂G(z, w; t)

∂t
=

N+1∑
k=1

N+I−(k−1)−1∑
l=−1

zk−1wl+1λklpkl(t) +
N∑
k=0

N+I−k+1∑
l=1

zkwl−1γlpkl(t)

−
N∑
k=0

N+I−i∑
l=0

zkwll(kλ+ γ)pkl(t). (7.5)

Now a closer inspection of each of the three double sums is required.

In the first term on the right hand side of equation (7.5), the lower limit of both sums,

k = 1 and l = −1 can be set to start from 0, since when k = 0 the k term in the sum will be

zero and when l = −1, by definition pk,−1(t) = 0. Looking at the k = N + 1 case, by definition

pN+1,j(t) = 0 therefore the sum over k need only go up to N , and l = N + I − (k − 1) − 1

simplifies to l = N + I − k. Therefore

N+1∑
k=1

N+I−(k−1)−1∑
l=−1

zk−1wl+1λklpkl(t) =
N∑
k=0

N+I−k∑
l=0

zk−1wl+1λklpkl(t). (7.6)

In the second term, the sum over k is in the required form, and the l term in the summation

means the sum over l can be started from zero as opposed to l = 1, as it just adds a zero into

the sum. Also by definition k + l ≤ N + I, but in the case l = N + I − k + 1, the value of

k+ l = k+N + I−k+ 1 = N + I+ 1, so the probability of this event will be zero by definition,

therefore this sum over l can be limited by N + I − k instead. Hence

N∑
k=0

N+I−k+1∑
l=1

zkwl−1γlpkl(t) =
N∑
k=0

N+I−k∑
l=0

zkwl−1γlpkl(t) (7.7)
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The third term is already of the required form so does not need to be analysed further.

Substituting the results from equations (7.6) and (7.7) back into equation (7.5) gives

∂G(z, w; t)

∂t
=

N∑
k=0

N+I−k∑
l=0

zk−1wl+1λklpkl(t) +
N∑
k=0

N+I−k∑
l=0

zkwl−1γlpkl(t)

−
N∑
k=0

N+I−i∑
l=0

zkwll(kλ+ γ)pkl(t).

Writing this all as one sum, and taking out relevant factors of z and w leads to

∂G(z, w; t)

∂t
=

N∑
k=0

N+I−i∑
l=0

{
λw2

(
zk−1wl−1klpkl(t)

)
+ γ

(
zkwl−1lpkl(t)

)
(7.8)

− λwz
(
zk−1wl−1klpkl(t)

)
− γw

(
zkwl−1lpkl(t)

)}
.

Using the results from Section 7.3.1 gives

∂G(z, w; t)

∂t
= λw2∂

2G(z, w; t)

∂z∂w
− λwz∂

2G(z, w; t)

∂z∂w
+ γ

∂G(z, w; t)

∂w
− γw∂G(z, w; t)

∂w
. (7.9)

As in Section 6.7.1, differentiating both sides of the equation with respect to z or w and

taking the limit as they both → 1− will give the time differential of the respective expectation

on the right hand side. This is shown for the more complex case of E[Y (t)], with the result

provided for E[X(t)].

Partially differentiating both sides of equation (7.9) with respect to w gives

∂2G(z, w; t)

∂w∂t
=
∂3G(z, w; t)

∂w2∂z
[λw2 − λwz] +

∂2G(z, w; t)

∂w∂z
[2λw − λz]

+
∂2G(z, w; t)

∂w2
[γ − γw] +

∂G(z, w; t)

∂w
[−γ].

Then, assuming the order of differentiation on the right hand side can be changed, taking the

limits z, w → 1− and using equations (7.3) and (7.4) gives

dE[Y (t)]

dt
= λE[X(t)Y (t)]− γE[Y (t)]

= λE[X(t)]E[Y (t)]− γE[Y (t)] + λcov[X(t), Y (t)]. (7.10)

This second equality in equation (7.10) is found by noting that the covariance between two

random variables X(t) and Y (t) satisfies

cov[X(t), Y (t)] = E[X(t)Y (t)]− E[X(t)]E[Y (t)].
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By the same method, the time differential of the expectation of X is

dE[X(t)]

dt
= −λE[(t)Y (t)]

= −λE[X(t)]E[Y (t)]− λcov[X(t), Y (t)]. (7.11)

For λ = β, since E[X(t)] ≈ x(t) and E[Y (t)] ≈ y(t) if the covariance term is small compared

to the other terms then equations (7.11) and (7.10) are well approximated by the general

deterministic epidemic equations. These general deterministic equations are given by equations

(4.1) and (4.2) to be

dy

dt
= βxy − γy

dx

dt
= −βxy.

Hence it is clear that the deterministic and stochastic models are closely related. Once the

general stochastic epidemic can be plotted, as done in Section 7.4, the similarities between the

two will be further commented upon.

7.4 Numerical solution

The general stochastic epidemic can be further investigated by numerically solving equations

(7.10) and (7.11). This is done by using a generalisation of the code given in Section 6.8 to

accommodate the fact the Markov process is now a function of two variables rather than one.

The code simulates to the time to the next transition of any kind by summing the prob-

abilities of the two different transitions. This can be done as when in state (i, j), infections

and removals occur from independent Poisson processes, so the probability of an infection or a

removal is the sum of the probabilities of the two events occuring. The code then determines

which of the two transitions have occurred at this time using the probability of each event,

storing an infection as k = 1 in the vector kevent and a removal as k = 2 in the same vector.

The R code below does this whilst simulating the Markov process numerically, also plotting

the general deterministic numerical solution used in Section 4.4.5 with the same parameter

values for comparison. Finally, a simulation of 1000 Markov processes with the same parameters

is performed to identify a mean end time, stored in object tend and mean number of susceptibles

that do not ever become infected, stored in object xend. The R code below does this, and

produces the plot in Figure 7.1.

###stochastic###
N=95; I=5; nn=N; lambda=0.01; gamma=0.01; tt=0 #setting up constants
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y=I; x=nn; z=0 #setting up initial population split
tevent=numeric(0) #will store the transition times
kevent=numeric(0) #will store the type of transition
while((y>0)){
#Finding the time to the next event
pxy=lambda*x*y; pyz=gamma*y; ptot=pxy+pyz
u=rexp(1,ptot)
#finding if a transition occurs, which one
tt=tt+u
k=sample(c(1,2),1,prob=c(pxy,pyz))
#dealing with x equal and not equal to 0 separately
if(x!=0){
if(k == 1){x=x-1;y=y+1}
if(k == 2){y=y-1;z=z+1}}
if(x==0){
if(k == 2){y=y-1;z=z+1}}
tevent=c(tevent,tt) #storing transition time
kevent=c(kevent,k)} #storing transition type

#plotting
plot(0,0,type="n",xlim=c(0,40),ylim=c(0,100),xlab="Time t",ylab="Number")
legend(12,90,c("Number of susceptibles","Number of infectives"),lty=c(1,2),bty="n")
n=length(tevent)
#setting up initals
xx=nn; yy=I
lines(c(0,tevent[1]),c(xx,xx),lty=1)
lines(c(0,tevent[1]),c(yy,yy),lty=2) #setting up the starting point
#iterating drawing lines for each transition
for (i in 1:n){
if(kevent[i] == 1){
lines(c(tevent[i],tevent[i]),c(xx,xx-1),lty=3); xx=xx-1
lines(c(tevent[i],tevent[i]),c(yy,yy+1),lty=3); yy=yy+1}
if(kevent[i] == 2){
lines(c(tevent[i],tevent[i]),c(yy,yy-1),lty=3); yy=yy-1}
#drawing the horizontal lines
if(i!=n){
lines(c(tevent[i],tevent[i+1]),c(xx,xx),lty=1)
lines(c(tevent[i],tevent[i+1]),c(yy,yy),lty=2)}}

###1000 sims###
tend=numeric(1000) #will store all end times
xend=numeric(1000) #will store all final number susceptibles
for(isim in 1:1000){
y=I; x=nn; z=0; tt=0
while((y>0)){
#Finding the time to the next event
pxy=lambda*x*y; pyz=gamma*y; ptot=pxy+pyz
u=rexp(1,ptot)

78



Figure 7.1: The deterministic (top left plot) and five stochastic realisations of the general

stochastic epidemic with parameters N = 95, I = 5, λ = β = 0.01 and γ = 0.01.

#finding if a transition occurs, which one
tt=tt+u
k=sample(c(1,2),1,prob=c(pxy,pyz))
if(x!=0){
if(k == 1){x=x-1;y=y+1}
if(k == 2){y=y-1;z=z+1}}
if(x==0){
if(k == 2){y=y-1;z=z+1}}}
tend[isim]=tt
xend[isim]=x}

For these parameter values, R returns the results
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mean(tend)
4199.36
mean(xend)
0.

This implies that all susceptibles become infected in this case, and due to the fact the

removal rate is so small, the epidemic takes a long time, 4199.36 here, for all infective members

to become removed.

The simple epidemic is classed as finished once all susceptibles are infected, however in the

general case infective members can also become removed. Susceptibles stop becoming infected

relatively early on in Figure 7.1, but if a government wanted to know how long they would need

to provide support, supplies and help for, defining the end of an epidemic as when no infective

members remain is probably a more realistic definition. Therefore the end of a general epidemic

is defined as when there are no infectives remaining, this is the time given by the tend object

in the R code above.

Furthermore, looking at the infective curves in Figure 7.1, after some initial variation in-

cluding the exact locations of the peaks of the stochastic and deterministic curves, the stochastic

and deterministic curves are well matched, especially asymptotically. Towards the end of this

epidemic, the number of susceptibles is zero with no chance of changing, hence it is reasonable

to assume that the covariance between X(t) and Y (t) is negligible, or even zero. At this point,

the decay of the number of current infectives behaves like a death process discussed in Section

5.3.1. When this is the case, as mentioned earlier, the stochastic and deterministic models given

by equations (7.10) and (7.11), and equations (4.1) and (4.2) respectively are well matched.

This seems to be illustrated by the plots in Figure 7.1. However, earlier in the epidemic, when

the number of susceptibles is changing, X(t) and Y (t) certainly are correlated. A decrease in

susceptibles will certainly cause an immediate increase in infectives and therefore a correlation

between the number of susceptibles and infectives would be expected.

Realisations of an epidemic with different parameter values, when all susceptibles do not

become infected, is shown in Figure 7.2. These are the same parameter values used for the

plot in Figure 4.10 of N = 9, I = 1, λ = β = 0.05 and γ = 0.7. In this case, comparing with

the deterministic case in Figure 4.10, the randomness seems to have much more of an effect on

the outcome of the epidemic. The high removal rate, coupled with the fact there is only one

infective means that for three of the plots, the infective member of the population is removed

before they can infect any susceptibles. In the top left plot however the infective manages to

infect a susceptible member resulting in more infections taking place and the epidemic evolving

rather than just dying out straight away like in the other three plots. This seems to agree with

the result derived in Section 6.7.2, that for larger populations, the stochastic and deterministic
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Figure 7.2: Four realisations of the general determinstic and stochastic model for N = 9, I = 1,

λ = β = 0.05 and γ = 0.7.

models are well matched; although the random nature of the stochastic model can make them

differ in smaller populations.

In addition to the plots in Figure 7.2, the 1000 simulations of the epidemic where N = 9,

I = 1, λ = 0.05 and γ = 0.7 were used to investigate the duration T of the epidemic, and the

number of susceptibles remaining once the epidemic is over. The R commands

tupper=ceiling(max(tend))
hist(tend,freq=FALSE,breaks=c(0:tupper),xlab="Duration T",
ylab="Proportion",main="",ylim=c(0,0.6))
hist(xend,freq=FALSE,breaks=-0.5+c(0:(nn+1)),xlab="X(t)",
ylab="Proportion",main="",ylim=c(0,0.6),xlim=c(0,10))

were used to plot the histograms in Figure 7.3. Figure 7.3 (left) suggests that the duration of

the epidemic is generally very short. This agrees with the plots in Figure 7.2 which sees three

out of the four realisations end almost immediately with no secondary infections. The fact

there are usually no secondary infections is consistent with Figure 7.3 (right) which implies the

most likely outcome of the epidemic is that all nine susceptibles remain uninfected at the end,

which happens roughly 60% of the time. The randomness of the model is highlighted by the

fact that, whilst the most likely duration times are close to 0, times of up to 10 are observed.

Similarly, the most likely number of susceptibles remaining at the end of the epidemic is 9,
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Figure 7.3: Histograms showing the proportion of end times (left) and remaining number of

susceptibles (right) at the end of an epidemic with N = 9, I = 1, λ = 0.05 and γ = 0.7.

but all situations between 1 and 9 susceptibles remaining are realised at some point during the

1000 simulations.

Whether or not the whole population of susceptibles will eventually become infected is

dependent on the number of infectives, susceptibles and the parameters γ and λ, as well as the

randomness of the model. If γj > λij it is more likely that an infective will be removed than

a susceptible be infected in state (i, j).

In this example where the epidemic starts with one infective, initially there is a greater

chance that the infective will be removed than infect another member, as γ = 0.7 > 0.45 = λi.

In the deterministic model this would be the condition for no epidemic to take place, however

because of the randomness in the stochastic model, there is a chance that the single infective

could infect a susceptible, causing γ to increase to 2γ and making another infection more likely

that it was before. This behaviour can be seen in the top left plot of Figure 7.2 where the

epidemic fails to die out before any infections have taken place, in contrast to the other three

plots.
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Chapter 8

Epidemic Modelling In Reality

Now that models of disease spread have been introduced and investigated, they will applied to

some real world situations to see how well they can express what actually happens in reality.

As mentioned in Chapter 2, it is not clear how to estimate the parameters of the model

from real world data. Dietz (1993) and Heffernan et al. (2005) discuss various involved meth-

ods of estimation, but in this report some overly simplistic assumptions will be made when

estimating parameters, and hence some accuracy may be lost from the original data.

8.1 Measles

This section focuses on a Welsh measles outbreak, centred on the Swansea area, occurring

between November 2012 and July 2013. The data used comes from the Public Health Wales

(2015) website and gives the number of new cases for each month in the outbreak period. Also

included in the data set is the number of under immunised and un-immunised children in the

Swansea area on 1st November 2012, the time of the start of the outbreak.

As measles predominantly affects children, this number of under and un-immunised chil-

dren is taken to be the total number of susceptibles in the population. The data is collected

across the three large health boards close the Swansea area, Abertawe Bro Morgannwg UHB,

Hywel Dda HB and Powys Teaching HB. These are shown in Figure 8.1 taken from the NHS

Wales website (2015). The total number of susceptibles at the beginning of the outbreak across

these three health boards is 28870. In the first reported week of the outbreak, there are 34

reported cases of measles. This is taken to be the initial number of infectives used in the model.

Farrington et al. (2003, p126) discuss the measles infection process in detail. The average

infectious period for measles is roughly one week, and when setting up the model it will be

assumed that each member has an infectious period of one week. Measles also has a latent
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Figure 8.1: Wales broken down into health board regions; taken from the NHS wales website

(2015)
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period between a population member becoming infected and infectious of around two weeks.

However when a child displays the symptoms of measles, they are infective, so the latent period

will be ignored here to simplify the model. Furthermore, once the body has produced the

specific white blood cells needed to fight measles, these cells provide immunity from further

cases, so once infective members are no longer infected, they become removed and immune

from the disease.

8.1.1 The general deterministic model

Now, recalling the base reproduction number r0 from Chapter 2, it is stated in Section 2.4

that for an initial infective making βx0 transmissions of the disease in t time units, the base

reproduction number can be written as

r0 = βx0t.

Since y0 = 34 � 28870 = x0 we can take the initial infective assumption needed when calcu-

lating r0 as approximately valid for this population and assume that the time when there was

one infective was close to this time, in effect taking this to be the start of the epidemic.

Taking the time unit to be weeks, considering one week means t = 1. For measles in the

UK, Gay (2004) suggests 14 ≤ r0 ≤ 18, so taking the middle of this region it is assumed here

that r0 = 16. Note that this value for r0 is also in the range suggested by Fine (1993) given

in Chapter 2. For further reading, Mossong and Muller (2000) discuss methods of parameter

estimation of r0 in their paper. Now, using r0 = 16, the estimate for β is

β =
r0

x0t
=

16

28870
= 0.000554.

to three significant figures. Furthermore, γ is the removal rate per infective member per unit

time. Denoting A as the number of removals from B infectives over time period T , γ can be

estimated by

γ =
A

BT
.

By taking T as the average infectious period of measles which is roughly one and a half weeks,

it would be expected that over this period, all B infectives present at the start of the period

would become removed. This leads to the conclusion that

γ =
1

1.5
=

2

3
.

Now these parameters can be used to model the measles outbreak as a general determinis-

tic epidemic, as in Chapter 4. Figure 8.2 shows the numerically simulated number of infectives
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Figure 8.2: Modelling measles with the general deterministic epidemic with x0 = 28870, y0 = 34,

β = 0.000554 and γ = 0.667.

plotted against time, modelled by the general deterministic epidemic using the R code from

Section 4.4.5.

This model suggests that, under the standard assumption of homogeneous mixing, roughly

no susceptibles remain after one week, with no infective members left after around eight weeks.

The conclusion that every child not fully vaccinated in the Swansea area will become

infected with measles during the epidemic seems quite extreme. The fact the model displays this

is a consequence of the very high value of r0 and the homogeneous mixing assumption. It does

not take into account once a child is infected with measles they will most likely be isolated in

hospital or stay in bed at home, and hence would struggle to infect other susceptibles, meaning

homogeneous mixing between all population members is probably not a valid assumption. In

addition, the health boards affected by the outbreak implemented a variety of preventative

measures.

Different methods of preventative measures including vaccination, updating public aware-

ness and population screening and are discussed in depth by Carneiro and Howard (2011, p137)

and Beaglehole et al. (1993, p83). The methods used in this instance were highlighted in the

Public Health Wales post epidemic report. They included additional immunisation of suscep-

tible members leading to an extra 30000 vaccinations across vulnerable areas, and a specialist

measles control call centre for quicker diagnosis and to provide advice to keep infectious mem-

bers from passing the disease on.
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Figure 8.3: The monthly number of reported cases through the evolution of the epidemic, data

taken from Public Health Wales.

Again, using the data from the Public Health Wales website, the number of new cases

reported each month is plotted in Figure 8.3. The cumulative number of people infected

throughout the course of the epidemic was 1219. The total number of reported cases given

by Public Health Wales is shown in Figure 8.4.

The difference between the deterministic model and the real data is large. In the model all

28870 susceptibles become infected within one week, whereas in reality only 1219 people became

infected in 30 weeks. This could be down to a variety of factors. Certainly the homogeneous

mixing assumption may not be correct in this case as explained above. Also, the assumptions

made to estimate β and γ for this model may interfere with the data. However, the preventative

measures put in place by the health boards trying to control the outbreak may also play a big

part. If nearly 30000 susceptible members were homogeneously mixing with a disease as highly

contagious as measles, it is easy to imagine that all members may become infected. In practice,

homogeneous mixing between around 30000 children is not a wholly realistic assumption to

make. In this instance the health boards managed to drastically slow the spread of the disease,

strongly limiting the number of infections to roughly 5% of the under or un-vaccinated child

population.
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Figure 8.4: The total number of reported cases through the evolution of the epidemic, data

taken from Public Health Wales.

8.1.2 Vaccinating in the general deterministic model

The preventative measure of vaccination can be imitated by adding a vaccination rate v to

the general deterministic differential equations given by Equations (4.1), (4.2) and (4.3) in a

similar fashion to Keeling et al. (2013) . This vaccination rate would aim to keep vaccinating

a constant rate v of current susceptibles, taking them straight to the removal class. This leads

to the modified set of differential equations

dx

dt
= −βxy − vx

dy

dt
= βxy − γy

dz

dt
= γy + vx.

Assuming that the aim was to keep constant a rate of vaccination of 10% of the susceptible

population, numerically solving these equations in the case v = 0.1 with β = 0.000554 and

γ = 0.667 gives the plot shown in Figure 8.5.

Here the time until no susceptibles remain is slightly longer, and with the vaccination

policy removing a proportion of susceptibles, they will not all pass through the infected state.

This is highlighted by the slightly lower peak of the curve illustrating the number of infectives.
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Figure 8.5: Modelling measles with the general deterministic epidemic with x0 = 28870, y0 = 34,

β = 0.000554, γ = 0.667 and v = 0.1.

8.1.3 Increasing the removal rate parameter

Furthermore, the measles control call centre would lead to quicker diagnosis and hence removal

from the infective class, and the increased public awareness of the outbreak through news and

word of mouth may lead to an increased removal rate from the infective class. Assuming this

action could double the removal rate of infective members, equivalent to taking γ = 4
3

= 1.33,

with all other parameters unchanged, gives the plot in Figure 8.6.

Again this reduces the size of the infective curve, giving a shorter time until no infectives

remain of around four weeks. This is to be expected, as increasing only the rate at which

infectives are removed should reduce the size and length of the epidemic. Comparing the

infective evolution in Figure 8.6 to the actual evolution in Figure 8.4 suggests that the model

is still some way off reality, overestimating the number of infectives and under estimating the

time taken for these infections to occur.

8.1.4 Adapting the model to include inhomogeneous mixing

As mentioned earlier, homogeneous mixing between the whole population is likely to be un-

realistic. Adapting the interacting groups model explained for the simple deterministic epi-

demic in Section 3.6 could help gain an understanding into the dynamics of having more than

one group. In this instance, it is assumed that each individual health board area is a single
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Figure 8.6: Modelling measles with the general deterministic epidemic with x0 = 28870, y0 = 34,

β = 0.000554, γ = 1.33 and v = 0.1

group, giving m = 3 groups. For simplicity it is also assumed that the internal infection rates

β1 = β2 = β3 = β are the same and the external infection rates βij = 0.01β for i ∈ {1, 2, 3},
j ∈ {1, 2, 3} and i 6= j. Finally assuming the initial number of susceptibles and infectives

are the same in each group, means there will be three groups evolving identically. This can

be incorporated into the general deterministic differential equations. Further building on the

model including vaccination discussed up to Section 8.1.3, each group will evolve according to

the equations

dx

dt
= −βxy − 0.01β(m− 1)xy − vx

dy

dt
= βxy + 0.01β(m− 1)xy − γy

dz

dt
= γy + vx.

As each group is identical and the model is deterministic, the solution for the population

as a whole is the solution for one group multiplied by m = 3. Numerically simulating these

equations for the current number of infectives gives the plot in Figure 8.7.

Here the actual number of infectives predicted by the model is substantially reduced

by the interacting group model between the three health boards. However, this model still

overestimates the number of infectives and fails to encapsulate the lag before the large increase
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Figure 8.7: Modelling measles with the general deterministic epidemic with m = 3 groups,

x0 = 28870, y0 = 34, β = 0.000554, γ = 1.33 and v = 0.1

in the number of infectives in the real world data. This lag in the real world data that is

not present in the model could be caused by the model failing to express the latent period of

measles where members are infected but not infectious to other susceptibles.

8.1.5 Adapting the model to inlcude a latent period

To model the exposed period between the periods in which a member is susceptible and infective,

an extension of the susceptible - infective - removal model is required. Different extensions of

this model are discussed by Brauer et al. (2008). In this case, introducing an exposed class

W between the susceptible and infective class is required, with w representing the number of

population members waiting to become infected in the exposed class. Now, instead of going

straight from susceptible to infective, each infected member becomes exposed for some period

of time, before leaving this exposed class with some rate µ per unit time. This leads to the

system of equations
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Figure 8.8: Modelling measles with the general deterministic epidemic, modified to include an

exposed class, with m = 3 groups, x0 = 28870, y0 = 34, β = 0.000554, γ = 1.33 and v = 0.1

dx

dt
= −βxy − 0.01β(m− 1)xy − vx

dw

dt
= βxy + 0.01β(m− 1)xy − µw

dy

dt
= µw − γy

dz

dt
= γy + vx.

In the Public Health Wales post epidemic report the incubation, or exposed, period of

the outbreak was given to be between 6 and 21 days. For simplicity here it is taken to be 2

weeks, so by the same reasoning used earlier to estimate γ, µ = 1
2
, as roughly half the exposed

members present at the start of one week will have left the exposed class at the end of one week.

Adapting the R code used in Section 4.4.5 to include this new latent class and to simulate this

numerically gives the plot in Figure 8.8.

This significantly reduces the height of the infective curve, and extends the time taken

for the small amount of infectives present to reduce to zero to over ten weeks. Figure 8.9 shows

just the infective curve for this model, plotted with the real data.

Modifying the model to include an exposed period seems to have a large effect on reducing

the height of the infective curve, bringing the model with these parameters close to the actual
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Figure 8.9: Infectives in the general deterministic epidemic, modified to include an exposed

class, with m = 3 groups, x0 = 28870, y0 = 34, β = 0.000554, γ = 1.33 and v = 0.1 plotted

alongside the real data.

data for the measles outbreak. This modification still fails to fully explain the lag before the

large peak in the real world data, this could be down to the randomness that cannot be expressed

by the deterministic model. As there are only a small number of infectives initially, removals

may occur before infections start to have a large influence on the data, and this randomness

cannot be expressed by the deterministic model. The lag could also be due to the validity of

the model failing at these early times before epidemic has really taken hold in the population.

Overall the large number of assumptions made in this section suggest these parameter

values used may not be wholly accurate and believable. In spite of this, whilst not mirroring

the reality of the measles outbreak exactly, these plots show that preventative measures such

as vaccination, actions that can increase the rate of removals from the infective state, looking

closer at the homogeneous mixing assumption and including a latent period in the model can

all have large effects on reducing the predicted size of an epidemic.

An in depth look at developing at introducing an exposed class is discussed by Goufo et

al. (2014). This lead to a whole family of compartmental models which have been adapted

with the aim of modeling many different disease states and types of epidemics, see Brauer et

al. (2008) and Brauer and Castillo-Chavez (2013).
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8.2 Disease spread in care homes

Another situation in which the rapid spread of disease could be devastating is in confined

populations with weak immune systems. Hospitals, nurseries and schools could all possibly fall

into this category, however this section will consider the spread of respiratory tract infections

(RTIs) in care homes for the elderly. Loeb et al. (2000) monitored 16 care homes in Toronto over

3 years finding that 24% of respiratory tract infections in this period occurred due to outbreaks

in the homes, and that the overall case fatality rate from RTIs was 8%. If the outbreaks of

RTIs could be limited, staff efforts and money spent on caring for infected patients could be

redistributed, and lives of patients could even be saved.

In this instance, RTIs are classed as any infection of the sinuses, throat, airways or lungs

that can be passed between care home residents such as influenza and pneumonia. These kind

of infectious diseases are comparatively common and more deadly in the elder populations than

in the population as a whole.

8.2.1 Modelling an outbreak stochastically

As most care homes only usually house up to around 100 patients, the small population means

a stochastic epidemic model may be appropriate to investigate this kind of situation.

Loeb et al. (2000) reported that the infection rate for one member was 0.42 per 1000

resident days. Therefore for a care home with 100 members starting with one infective, there

would be 0.42 infections in 10 days, and so the infection rate can be approximated by λ = 0.042

per day. Furthermore, the recovery time between different RTIs varies, as does the infectious

period. Here the average recovery time is taken to be 2 weeks, or 14 days, and it is assumed

that an infective member is infectious during this period. This means the removal rate can be

estimated by γ = 1
14

= 0.0714 to three significant figures. As in the previous section, these are

strong simplification assumptions made to gain a set of usable parameters and hence should be

treated with caution. Even if the parameters are not wholly accurate, they will provide a good

insight into how altering these parameters can change the outcome of an epidemic.

Inputting I = 1, N = 99, λ = 0.042 and γ = 0.0714 into the numerical model of the

general stochastic epidemic from Section 7.4 gives the plots in Figure 8.10. This seems to suggest

that under the homogeneous mixing assumption used in this model, that all susceptibles will

become infected within the space of a few days, and that it takes a long time for infectives

to recover afterwards. The homogeneous mixing assumption seems more valid here than in

measles example considered in Section 8.1 as the population size is much smaller, and the

whole population is confined to one care home.
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Figure 8.10: Four realisations of the general stochastic epidemic in a care home with I = 1,

N = 99, λ = 0.042 and γ = 0.0714.

Figure 8.11 shows the proportions of end times and remaining susceptibles once the epi-

demic is over averaged over 1000 simulations. The vast majority of simulations end with all

susceptibles becoming infected and removed, however a very small proportion of the epidemics

end very quickly, illustrated by the small proportion around 0 in Figure 8.11 (left) and 99 in

Figure 8.11 (right).

A situation such as this, where a large number of residents become infected and possibly

die, would obviously be disastrous for a care home. Using the historical care home RTI mortality

data from the investigation conducted by Loeb et al. (2000), 8 patients could be expected to

die as a result of this outbreak. A variety of preventative measures discussed in the previous

section could be implemented by the care home to counter an outbreak like this. The next

section will focus on the importance of early identification and isolation of infected members,

recommended by the Department of Health as a key measure in the prevention of care home

outbreaks.
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Figure 8.11: Proportions of durations (left) and remaining susceptibles (right) from the general

stochastic epidemic in a care home with I = 1, N = 99, λ = 0.042 and γ = 0.0714.

8.2.2 The influence of the removal rate parameter

The aim of early identification and isolation is to increase the value of the removal rate γ so that

removals happen regularly enough to counter the effect of increasing number of susceptibles

becoming infective. Introducing a weekly screening of the care home residents and putting any

found infective patients in isolation until they recover would mean that a member could be

infective to the susceptible residents for at most one week. This would cause an approximate

increase in γ from 1
14

to 1
7

= 0.143 to three significant figures. Performing 1000 simulations

with these parameters leads to the histograms in Figure 8.12.

Compared to Figure 8.11 there has been a slight increase in the proportion of simulations

where nearly all of the susceptible members remain susceptible until the epidemic is over.

This increase is only negligable though, and the proportion of cases where all susceptibles are

infection is still much greater.

To get a better idea of how regularly health checks for symptoms of the care home residents

would be needed to make a significant difference, Figure 8.13 shows the histogram of remaining

susceptibles for the care home outbreak model with I = 1, N = 99, λ = 0.042 and γ = 1
14

(top

left), γ = 1
7

(top right), γ = 1
1

= 1 (bottom left) and γ = 1
0.5

= 2 (bottom right). These values

for γ correspond to two weekly, weekly, daily and half daily regular checks and then isolation

for infective members respectively.

With daily checks, illustrated in Figure 8.13 (bottom left), the chance of a serious epidemic

expressed by the proportion bars on the left hand side of the plot is roughly equal to the

proportion of outbreaks where there is no real spread, indicated by the bars on the right hand

96



Figure 8.12: Proportions of durations (left) and remaining susceptibles (right) from the general

stochastic epidemic in a care home with I = 1, N = 99, λ = 0.042 and γ = 0.0714.

side of the plot. Furthermore the plot with half daily checks on the bottom right shows that

the chance of avoiding an epidemic where the majority of patients become infected is more

likely than not. Intuitively, as the removal rate γ → ∞, the proportion of epidemics with

a large number of infections should fall to 0, while the proportion of ‘epidemics’ finishing

before any infections have been made should tend to 1. This is reinforced by the histogram

in Figure 8.14 which shows the proportions of remaining susceptibles from 1000 simulations

when hourly checks are made on the care home residents for symptoms of RTIs, and discovered

infectives isolated immediately. Here because of the hourly check on patients, the removal rate

is estimated as γ = 1
1
24

= 24.

In this case none of the simulations result in a large spread of disease, with 99 remaining

susceptibles being the case with the highest proportion by far, and in all other simulated cases

the vast majority of susceptibles pass through the process uninfected. In this instance, the lack

of any proportions around 0 suggest there seems to be hardly any chance of a large number of

care home residents becoming infected.

This indicates that the regular monitoring of care home residents for, not just RTIs, but all

infectious diseases, and isolating any patient showing symptoms can vastly reduce the impact

of an infectious disease on a closed population. It is therefore vital that staff are regularly

observing and talking to residents to try to identify and eliminate possibly fatal disease spread

between them.
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Figure 8.13: Proportions of remaining susceptibles from the general stochastic epidemic in a

care home with I = 1, N = 99, λ = 0.042 and γ = 1
14

(top left), γ = 1
7

(top right), γ = 1

(bottom left) and γ = 2 (bottom right).
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Figure 8.14: Proportions of remaining susceptibles from the general stochastic epidemic in a

care home with I = 1, N = 99, λ = 0.042 and γ = 24.
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Chapter 9

Discussion

After developing the tools and investigating some of the interesting theoretical results that

have arisen as a consequence of modelling an epidemic deterministically and stochastically as

done up to Chapter 7, Chapter 8 demonstrates how these models can be applied to real world

situations. The models discussed can be used to examine the sensitivity of an epidemic to the

variation and introduction of new parameters and preventative measures.

The power to implement these modelling techniques whilst an epidemic is in process could

be vital to decision makers and medical professionals dealing with an outbreak of an infectious

disease. Being able to model the effect of introducing preventative measures such as mass

vaccination or isolation into an population can be quantified by mathematics and should be

able to provide additional, useful information when trying to control an epidemic outbreak.

With more time, the theory needed to extend and develop more involved versions of the

models discussed in this report would be investigated. This could lead to developing more

complex models such as the extended general stochastic models discussed by Gani (1967) and

adapting and introducing different versions of the compartmental model discussed briefly at

the end of Chapter 8 to better model reality, as done by Brauer and Castillo-Chavez (2013). In

addition, the chain binomial model discussed by Becker (1981) provides an alternative way to

view an epidemic, describing an epidemic as a sequence of binomial random variables. Daley and

Gani (1999, p105) comment on how this class of model is useful when dealing with diseases with

a short infective period in comparison to their latent period. Developing this chain binomial

model could also lead to more accurate real world models of some situations.

Alongside this, more effective and realistic methods of model parameter estimation would

be explored in a similar fashion to Dietz (1993), who provides different estimates for r0 de-

pending on the parameters for the disease in consideration and the stage of the epidemic. Also

Heffernan et al. (2005) describe how the base reproduction ratio can be defined, and estimated,
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through the use of integrated hazard rates.

The combination of these two improvements to the models introduced in this report would

lead to many more realistic, interesting and accurate applications to the real world spread of

epidemics.

One of most serious examples of mathematical epidemic modelling influencing disease

outbreak policy in recent years is the outbreak of foot and mouth disease in 2001. The math-

ematical models of how the disease was expected to evolve made up part of the information

used by policy makers when deciding to cull all farms close to, or infected with, foot and mouth

disease. This led to over 10 million sheep and cattle being killed, with the loss of livestock and

tourism estimated to have cost the UK over £8 billion.

The models used during the foot and mouth epidemic are described by Talyor (2003) in a

review of the use of models in forming disease policy for the Department for Environment and

Rural Affairs. These models were developed quickly during the early stages of the outbreak

and backed up the veterinary suggestions that culling all neighbouring farms, and farms within

3km of an infected premises, within 24 hours of diagnosis would reduce the length and severity

of the epidemic.

In his review of the main models used, Keeling (2005) describes how disease spread is

modelled on a local scale by using spatial clustering to express the closeness of farms. This was

required because as farms are in fixed locations with animals usually staying resident on only

one farm, homogeneous mixing between all farm animals in the country would not be a valid

assumption to make. Keeling (2005) also describes how these huge models, which involved the

diseased status of every farm in the country, were updated daily with the aim of giving policy

makers an insight into how any course of preventative measures they may undertake would

unfold in the future.

Despite all the epidemiological and modelling developments using these highly technical

and complex models, there were still some points in reality which the model failed to express.

The spatial clustering of farms only modelled the location of the farm houses. This was a

problem as the boundary of a farm where animals could graze may lie far from the actual farm

house, which is something that could not be described by the model. Additionally the changing

of infectivity of the disease throughout the outbreak could not be modelled, meaning a constant

infection rate for the different animals was used for all times throughout the modelling of the

disease.

This example highlights how difficult modelling large scale epidemics in reality is, there

is always multitude of factors that could have an effect on the outbreak. However, as shown

in this report, epidemic models can be an important decision making tool, illustrating how

introducing and changing different factors, parameters and preventative measures can effect
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the outbreak as a whole.

It is important that care is taken when presenting the results found from a mathemat-

ical epidemic model to decision makers who may not necessarily have a strong mathematical

grounding. But, when used as part of a well informed decision making process, and as modelling

techniques, theory and research continue to improve, epidemic modelling of infectious diseases

will continue to establish itself as a key resource in the handling of epidemiological crises in the

future.
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